
Introduction to Quantitative
Equity Strategies
MGMT 767: Data-Driven Investments Lab
Kerry Back and Kevin Crotty, Rice University



Typess of characteristics
Company financials

Financial ratios
Growth rates

Past returns
Momentum and reversal
Moving averages
Pairs trading



Trade data
Corporate insiders
Short sellers
Retail orders

Corporate events
Dividends, earnings, other

Nontraditional data
Social media
NLP of corporate announcements
Image data
Cellphone location data



Basic strategy
Combine characteristics to form a return predictor
Buy good stocks and maybe short sell bad stocks



Plan for the course
Backtest strategies and choose one
Use daily updated database to update return predictions at least weekly
Implement paper trades at Alpaca brokerage
Reassess and revise strategy regularly



Example for today
Momentum and value characteristics of small-cap stocks



Database
SQL database on Rice server. Must be on campus or on Rice VPN.
Data is downloaded from Nasdaq Data Link and updated on the server daily.
Access the database

In python using pyodbc.
On a Mac, you will need to install 
Everyone will need to pip install pyodbc

Or with 

Microsoft's ODBC Server

Azure Data Studio

https://learn.microsoft.com/en-us/sql/connect/odbc/linux-mac/install-microsoft-odbc-driver-sql-server-macos?view=sql-server-ver16
https://azure.microsoft.com/en-us/products/data-studio


In [2]: from sqlalchemy import create_engine

server = 'fs.rice.edu'
database = 'stocks'
username = 'stocks'
password = '6LAZH1'
driver1 = 'SQL+Server'
driver2 = 'ODBC+Driver+17+for+SQL+Server'
string1 = f"mssql+pyodbc://{username}:{password}@{server}/{database}?driver={d
string2 = f"mssql+pyodbc://{username}:{password}@{server}/{database}?driver={d
try: 
    conn = create_engine(string1).connect()
except:
    conn = create_engine(string2).connect() 



Database tables
tickers has one row for each ticker, with general company information
indicators has one row for each variable in the other tables with definitions
sf1 has annual and quarterly reports for all NYSE/Nasdaq stocks back to 2000
sep has daily open, high, low, close and adjusted close for same stocks
daily has marketcap, pb, pe, ps, ev, evebit, evebitda for same stocks
sep_weekly is a weekly version of sep
weekly is a weekly version of daily



Basic SQL
select [] from [] join [] on [] where [] order by []
select * means select all columns
select top 3 * means select all columns for top 3 rows
join [] on [] where [] order by [] are all optional
information_schema.tables lists the other tables.



TABLE_CATALOG TABLE_SCHEMA TABLE_NAME TABLE_TYPE

0 stocks dbo today BASE TABLE

1 stocks dbo ghz BASE TABLE

2 stocks dbo indicators BASE TABLE

3 stocks dbo tickers BASE TABLE

4 stocks dbo prices_weekly BASE TABLE

5 stocks dbo sep2 BASE TABLE

6 stocks dbo weekly BASE TABLE

7 stocks dbo sep_weekly BASE TABLE

8 stocks dbo sf1 BASE TABLE

9 stocks dbo daily BASE TABLE

10 stocks dbo sep BASE TABLE

In [3]: import pandas as pd 
pd.read_sql("select * from information_schema.tables", conn)

Out[3]:



permaticker siccode lastupdated firstadded firstpricedate lastpricedate fir

0 196290 3826 2023-12-20 2014-09-
26 1999-11-18 2024-01-05 1

1 124392 3334 2023-10-26 2016-11-
01 2016-11-01 2024-01-05 2

2 122827 6022 2019-07-29 2017-09-
09 1998-09-25 2003-01-28 1

3 rows × 26 columns

In [4]: pd.read_sql("select top 3 * from tickers", conn)

Out[4]:



tbl indicator isfilter isprimarykey title description unittype

0 SF1 revenue N N Revenues

[Income
Statement]

The amount
of Revenue

recog...

currency

1 SF1 cor N N Cost of
Revenue

[Income
Statement]

The
aggregate

cost of
goods...

currency

2 SF1 sgna N N

Selling General
and

Administrative
Expense

[Income
Statement]

A
component

of [OpEx]
repre...

currency

In [5]: pd.read_sql("select top 3 * from indicators", conn)

Out[5]:



ticker date lastupdated opn high low cls volume clo

0 PTMN 2018-
10-17 2023-11-17 31.900 32.200 31.800 31.900 4428.200

1 RELI 2019-
06-14 2023-02-23 192.855 192.855 177.105 177.105 91.267 1

2 REX 2019-
06-14 2022-08-08 23.607 23.667 22.630 22.663 142662.000

In [6]: pd.read_sql("select top 3 * from sep", conn)

Out[6]:



ticker date lastupdated ev evebit evebitda marketcap pb pe

0 APCC 2000-
05-19 2019-03-28 6145.0 21.0 19.0 6601.2 7.3 32.0

1 MYGN 2006-
12-29 2018-10-18 1158.0 -28.0 -33.7 1246.6 5.2 -30.1

2 GNI 2006-
07-21 2018-10-18 177.3 11.9 11.7 178.1 12.1 11.9

In [7]: pd.read_sql("select top 3 * from daily", conn)

Out[7]:



ticker dimension calendardate datekey reportperiod lastupdated acco

0 DWAC ARQ 2021-06-30 2021-
09-01 2021-06-30 2023-11-13 0

1 WEX ARQ 2009-12-31 2010-
02-26 2009-12-31 2023-10-28 -287000

2 WEX ARQ 2010-03-31 2010-
04-30 2010-03-31 2023-10-28 -568000

3 rows × 111 columns

In [8]: pd.read_sql("select top 3 * from sf1", conn)

Out[8]:



Weekly tables
Weekly versions of sep and daily (sep_weekly  sep, weekly  daily)
Convenient for looking at strategies that trade weekly
Calculate weekly returns from weekly adjusted closing prices

Prices are dividend and split adjusted
So % changes are total returns including dividends

Can use end-of-prior-week pb (price-to-book) from weekly table to pick stocks (for
example).

∼ ∼



Momentum
What people have found in equities and other markets (see "Value and Momentum
Everywhere" by Asness and other AQR people) is

long-term reversals (5 year returns reverse somewhat)
medium-term momentum (1 year or 6 month returns continue)
short-term reversals (1 month or 1 week returns reverse)

The conventional definition of momentum in academic work (including the Asness
paper) is last year's return excluding the most recent month

In other words, the return over the first 11 of the previous 12 months.



Calculating momentum
Each week, we want to look back one year and compound the returns, excluding
the most recent month.
Count the weeks in the prior year as 1, 2, ..., 52.
We want to calculate .
We can do this as

In other words,

(1 + r1) ⋯ (1 + r48)

(1 + r1) ⋯ (1 + r52)

(1 + r49) ⋯ (1 + r52)

1 + last year's return

1 + last month's return



Get data
Start in 2010 just to make the example quicker to run (data starts in 2000).
Get closeadj to compute returns.
Get closeunadj to filter out penny stocks (will impose price  5).
In case there are two rows for the same stock/date, keep the one with the latest
"lastupdated."

≥



In [9]: prices = pd.read_sql(
    """ 
    select date, ticker, closeadj, closeunadj, lastupdated from sep_weekly 
    where date>='2010-01-01'
    order by ticker, date, lastupdated    
    """,
    conn,
)
prices = prices.groupby(["ticker", "date", "lastupdated"]).last()
prices = prices.droplevel("lastupdated")



In [10]: rets = prices.groupby(
    "ticker", 
    group_keys=False
).closeadj.pct_change()

rets_annual = prices.groupby(
    "ticker", 
    group_keys=False
).closeadj.pct_change(52)

rets_monthly = prices.groupby(
    "ticker", 
    group_keys=False
).closeadj.pct_change(4)

mom = (1 + rets_annual) / (1 + rets_monthly) - 1



Value investing
Value means cheap relative to quality. Value investing has a very long tradition.
Conventional measures are price-to-earnings (PE) and price-to-book (PB).
Low PE or low PB stocks are value stocks. High PE or PB stocks are "growth stocks"
or "glamour stocks."
We'll use PB in this example, but PE is also worth exploring (also price-to-sales,
price-to-clicks, ...)



Get data
Follow same recipe as when getting prices but use the weekly table.
Get pb and marketcap (so we can filter to small caps)



In [11]: df = pd.read_sql(
    """ 
    select date, ticker, pb, marketcap, lastupdated from weekly 
    where date>='2010-01-01'
    order by ticker, date, lastupdated    
    """,
    conn,
)
df = df.groupby(["ticker", "date", "lastupdated"]).last()
df = df.droplevel("lastupdated")



Merge and lag
The return shown at a given date is the return over the week ending on that date.
To pick stocks, we need to use characteristics known at the beginning of the week.

This is the same as the end of the prior week.
We will line up marketcap, closeunadj, mom, and pb from the prior week with the
return of the current week.



In [12]: df["close"] = prices.closeunadj
df["ret"] = rets
df["mom"] = mom
for col in ["marketcap", "close", "mom", "pb"]:
    df[col] = df.groupby("ticker", group_keys=False)[col].shift()
df = df.dropna()



Filter to small caps and exclude penny stocks
Rank on marketcap each week, with 1=largest, etc. Drop largest 1,000.
Drop all stocks with price < 5.



In [13]: size_rank = df.groupby(
    "date", 
    group_keys=False
).marketcap.rank(ascending=False)

df = df[size_rank>1000]
df = df[df.close > 5]



Number of stocks by week



In [14]: num_stocks = df.groupby("date", group_keys=True).ret.count()
num_stocks.index = pd.to_datetime(num_stocks.index)
num_stocks.plot()

Out[14]: <AxesSubplot: xlabel='date'>



Preliminary analysis
To understand how returns depend on momentum and value, we start by sorting
into quintiles each week on each characteristic.
We intersect the two sorts, forming 25 groups each week.
We calculate average returns within each group. These are equally weighted
portfolio returns.



In [15]: df["pb_quintile"] = df.groupby("date", group_keys=False).pb.apply(
    lambda x: pd.qcut(x, 5, labels=range(1, 6))
)
df["mom_quintile"] = df.groupby("date", group_keys=False).mom.apply(
    lambda x: pd.qcut(x, 5, labels=range(1, 6))
)
sorted_rets = df.groupby(
    ["date", "pb_quintile", "mom_quintile"], 
    observed=True,
    group_keys=True
).ret.mean()
sorted_rets = sorted_rets.unstack(["pb_quintile", "mom_quintile"])



pb_quintile 1

mom_quintile 1 2 3 4 5 1

date

2011-01-14 0.003848 -0.002287 0.006847 -0.000550 0.000852 -0.014294 -

2011-01-21 0.012342 0.008409 0.009834 0.015451 0.002926 0.016729

2011-01-28 -0.019970 -0.003331 -0.005422 -0.011979 -0.021571 -0.018761 -

2011-02-04 -0.004283 0.006279 -0.005805 0.010473 0.014758 -0.005800

2011-02-11 0.015693 0.022936 0.020645 0.020812 0.025529 0.016449

5 rows × 25 columns

In [16]: sorted_rets.head()

Out[16]:



mom_quintile 1 2 3 4 5

pb_quintile

1 0.038 0.134 0.159 0.163 0.140

2 0.057 0.105 0.116 0.110 0.128

3 0.068 0.095 0.106 0.103 0.132

4 0.084 0.091 0.109 0.127 0.128

5 0.001 0.077 0.110 0.094 0.152

In [17]: mean_sorted_rets = sorted_rets.mean()
mean_sorted_rets = mean_sorted_rets.unstack()
(52*mean_sorted_rets).round(3)

Out[17]:



Example strategy
Compute momentum rank each week (1 = highest = best)
Compute value rank each week (1 = lowest = best)
Average ranks
Hold 50 stocks with best (1 = best) ranks each week, equally weighted
Compare to 50 stocks with worst ranks each week, equally weighted and compare
to all stocks



Best stocks



In [18]: mom_rank = df.groupby("date", group_keys=False).mom.rank(ascending=False)
pb_rank = df.groupby("date", group_keys=False).pb.rank()
avg_rank = (mom_rank + pb_rank) / 2

starting_from_best = avg_rank.groupby("date", group_keys=False).rank()
best = df[starting_from_best <= 50]
best_rets = best.groupby("date", group_keys=True).ret.mean()
best_rets.index = pd.to_datetime(best_rets.index)



Worst and all stocks



In [19]: starting_from_worst = avg_rank.groupby(
    "date", 
    group_keys=False
).rank(ascending=False)
worst = df[starting_from_worst <= 50]
worst_rets = worst.groupby("date", group_keys=True).ret.mean()
worst_rets.index = pd.to_datetime(worst_rets.index)

all_rets = df.groupby("date", group_keys=True).ret.mean()
all_rets.index = pd.to_datetime(all_rets.index)



Cumulative returns



In [20]: import matplotlib.pyplot as plt
(1+best_rets).cumprod().plot(label="best")
(1+worst_rets).cumprod().plot(label="worst")
(1+all_rets).cumprod().plot(label="all")
plt.legend()
plt.show()


