Introduction to Quantitative
Equity Strategies

MGMT 767: Data-Driven Investments Lab
Kerry Back and Kevin Crotty, Rice University

Typess of characteristics

e Company financials
= Financial ratios
= Growth rates
e Past returns
= Momentum and reversal
= Moving averages
= Pairs trading

e Trade data

m Corporate insiders

= Short sellers

= Retail orders
e Corporate events

= Dividends, earnings, other
e Nontraditional data

Social media

NLP of corporate announcements

Image data

Cellphone location data

Basic strategy

e Combine characteristics to form a return predictor
e Buy good stocks and maybe short sell bad stocks

Plan for the course

e Backtest strategies and choose one
e Use daily updated database to update return predictions at least weekly
e Implement paper trades at Alpaca brokerage

e Reassess and revise strategy regularly

Example for today

Momentum and value characteristics of small-cap stocks

Database

e SQL database on Rice server. Must be on campus or on Rice VPN.
e Data is downloaded from Nasdaq Data Link and updated on the server daily.
e Access the database
= |n python using pyodbc.
o On a Mac, you will need to install Microsoft's ODBC Server
o Everyone will need to pip install pyodbc
= Or with Azure Data Studio

https://learn.microsoft.com/en-us/sql/connect/odbc/linux-mac/install-microsoft-odbc-driver-sql-server-macos?view=sql-server-ver16
https://azure.microsoft.com/en-us/products/data-studio

from sqlalchemy import create_engine

server = 'fs.rice.edu'

database = 'stocks'

username = 'stocks'

password = '6LAZH1'

driverl = 'SQL+Server'

driver2 = 'ODBC+Driver+17+for+SQL+Server'

stringl = f"mssql+pyodbc://{username}:{password}@{server}/{database}?driver={
string2 = f"mssql+pyodbc://{username}:{password}@{server}/{database}?driver={
try:

conn = create_engine(stringl).connect()
except:

conn = create_engine(string2).connect()

Database tables

e tickers has one row for each ticker, with general company information

e indicators has one row for each variable in the other tables with definitions

e sf1 has annual and quarterly reports for all NYSE/Nasdaq stocks back to 2000
e sep has daily open, high, low, close and adjusted close for same stocks

e daily has marketcap, pb, pe, ps, ev, evebit, evebitda for same stocks

e sep_weekly is a weekly version of sep

e weekly is a weekly version of daily

Basic SQL

e select [] from [] join [] on [] where [] order by []

select * means select all columns

select top 3 * means select all columns for top 3 rows

join [] on [] where [] order by [] are all optional

information_schema.tables lists the other tables.

import pandas as pd
pd.read sql("select * from information_schema.tables", conn)

TABLE_CATALOG TABLE_SCHEMA TABLE_NAME TABLE TYPE

0 stocks dbo today BASE TABLE
1 stocks dbo ghz BASE TABLE
2 stocks dbo indicators ~ BASE TABLE
3 stocks dbo tickers BASE TABLE
4 stocks dbo prices_weekly BASE TABLE
5 stocks dbo sep2 BASE TABLE
6 stocks dbo weekly BASE TABLE
7 stocks dbo sep_weekly BASE TABLE
8 stocks dbo sf1 BASE TABLE
9 stocks dbo daily ~ BASE TABLE
10 stocks dbo sep BASE TABLE

pd.read sql("select top 3 * from tickers", conn)

permaticker siccode lastupdated firstadded firstpricedate lastpricedate fi
2014-09-

0 196290 3826 2023-12-20 0 0296 1999-11-18 2024-01-05 1
2016-11-

1 124392 3334 2023-10-26 01 2016-11-01 2024-01-05 2
2017-09-

2 122827 6022 2019-07-29 0 039 1998-09-25 2003-01-28 1

3 rows x 26 columns

pd.read _sql("select top 3 * from indicators", conn)

tbl indicator isfilter isprimarykey title description unittype
[Income
Statement]

0 SF1 revenue N N Revenues The amount currency
of Revenue
recog...
[Income
Statement]

1 SF1 cor N N Cost of The currency
Revenue aggregate
cost of
goods...
[Income
Selling General Statement]

2 SFH1 sgna N - a.nd currency
Administrative component
Expense of [OpEX]

repre...

pd.read sql("select top 3 * from sep", conn)

ticker date lastupdated opn high low cls volume cl
0 PTMN ?gjf; 2023-11-17 31900 32.200 31.800 31.900 4428.200
2019-
1 RELI 06-14 2023-02-23 192.855 192.855 177.105 177.105 91.267 1
2019-
2 REX 2022-08-08 23.607 23.667 22.630 22.663 142662.000

06-14

pd.read sql("select top 3 * from daily", conn)

ticker date lastupdated ev evebit evebitda marketcap pb pe
2000-

0 APCC 05-19 2019-03-28 6145.0 21.0 19.0 66012 7.3 320
2006-

1 MYGN 1229 2018-10-18 1158.0 -28.0 -33.7 1246.6 5.2 -30.1

2 GNI 2006- 2018-10-18 177.3 11.9 11.7 178.1 121 119

07-21

pd.read_sql("select top 3 * from sfl1", conn)

ticker dimension calendardate datekey reportperiod lastupdated acca

0 DWAC ARQ 2021-06-30 (2)8?;1 2021-06-30 2023-11-13 C
2010-

1 WEX ARQ 2009-12-31 02-26 2009-12-31 2023-10-28 -28700C
2010-

2 WEX ARQ 2010-03-31 04-30 2010-03-31 2023-10-28 -56800C

3 rows x 111 columns

Weekly tables

e Weekly versions of sep and daily (sep_weekly ~ sep, weekly ~ daily)
e Convenient for looking at strategies that trade weekly
e Calculate weekly returns from weekly adjusted closing prices
= Prices are dividend and split adjusted
m S0 % changes are total returns including dividends
e Can use end-of-prior-week pb (price-to-book) from weekly table to pick stocks (for
example).

Momentum

e What people have found in equities and other markets (see "Value and Momentum
Everywhere" by Asness and other AQR people) is
= [ong-term reversals (5 year returns reverse somewhat)
= medium-term momentum (1 year or 6 month returns continue)
» short-term reversals (1 month or 1 week returns reverse)
e The conventional definition of momentum in academic work (including the Asness
paper) is last year's return excluding the most recent month
= |n other words, the return over the first 11 of the previous 12 months.

Calculating momentum

e Each week, we want to look back one year and compound the returns, excluding
the most recent month.

e Count the weeks in the prioryearas 1, 2, ..., 52.

e We want to calculate (1 + 1) -+ (1 + rgg).

e We can do this as

(L471)--- (14 75)
(1 +ra9) -+ (14 7r52)

e |n other words,

1 + last year’s return
1 4 last month’s return

Get data

e Startin 2010 just to make the example quicker to run (data starts in 2000).

e Get closeadj to compute returns.

e Get closeunadj to filter out penny stocks (will impose price > 5).

e In case there are two rows for the same stock/date, keep the one with the latest

"lastupdated.”

prices = pd.read _sql(
select date, ticker, closeadj, closeunadj, lastupdated from sep weekly
where date>='2010-01-01"
order by ticker, date, lastupdated

nun
J

conn,

)

prices
prices

prices.groupby(["ticker", "date", "lastupdated"]).last()
prices.droplevel("lastupdated")

rets = prices.groupby/(
"ticker",
group_keys=False

).closeadj.pct_change()

rets_annual = prices.groupby/(
"ticker",
group_keys=False

).closeadj.pct_change(52)

rets_monthly = prices.groupby(
"ticker",
group keys=False
).closeadj.pct _change(4)

mom = (1 + rets_annual) / (1 + rets_monthly) - 1

Value investing

e Value means cheap relative to quality. Value investing has a very long tradition.

e Conventional measures are price-to-earnings (PE) and price-to-book (PB).

e Low PE or low PB stocks are value stocks. High PE or PB stocks are "growth stocks"
or "glamour stocks."

e We'll use PB in this example, but PE is also worth exploring (also price-to-sales,

price-to-clicks, ...)

Get data

e Follow same recipe as when getting prices but use the weekly table.
e Get pb and marketcap (so we can filter to small caps)

df = pd.read_sql(
select date, ticker, pb, marketcap, lastupdated from weekly
where date>='2010-01-01"
order by ticker, date, lastupdated

nun
J

conn,
)

df = df.groupby(["ticker", "date", "lastupdated"]).last()
df = df.droplevel("lastupdated")

Merge and lag

e The return shown at a given date is the return over the week ending on that date.

e To pick stocks, we need to use characteristics known at the beginning of the week.
= This is the same as the end of the prior week.

e We will line up marketcap, closeunadj, mom, and pb from the prior week with the

return of the current week.

df["close"] = prices.closeunadj
df["ret"] rets
df["mom" mom
for col in ["marketcap", "close", "mom", "pb"]:
df[col] = df.groupby("ticker", group_ keys=False)[col].shift()
df = df.dropna()

Filter to small caps and exclude penny stocks

e Rank on marketcap each week, with 1=largest, etc. Drop largest 1,000.
e Drop all stocks with price < 5.

size rank = df.groupby(
"date",
group_keys=False
) .marketcap.rank(ascending=False)

df
df

df[size rank>1000]
df[df.close > 5]

Number of stocks by week

num_stocks = df.groupby("date", group_keys=True).ret.count()
num_stocks.index = pd.to_datetime(num_stocks.index)
num_stocks.plot()

<AxesSubplot: xlabel='date'>

2600

2400

2200 -

2000 -

1800 +

S e e e o
date

Preliminary analysis

e To understand how returns depend on momentum and value, we start by sorting
into quintiles each week on each characteristic.
e We intersect the two sorts, forming 25 groups each week.

e We calculate average returns within each group. These are equally weighted
portfolio returns.

df["pb_quintile"] = df.groupby("date", group keys=False).pb.apply(
lambda x: pd.qcut(x, 5, labels=range(1, 6))
)

df["mom_quintile"] = df.groupby("date", group keys=False).mom.apply(
lambda x: pd.qcut(x, 5, labels=range(1, 6))
)

sorted_rets = df.groupby(
["date", "pb_quintile", "mom_quintile"],
observed=True,
group_keys=True
).ret.mean()
sorted rets = sorted rets.unstack(["pb_quintile", "mom quintile"])

sorted rets.head()

pb_quintile 1

mom_quintile 1 2 3 4 5 1

date

2011-01-14 0.003848 -0.002287 0.006847 -0.000550 0.000852 -0.014294 -
2011-01-21 0.012342 0.008409 0.009834 0.015451 0.002926 0.016729
2011-01-28 -0.019970 -0.003331 -0.005422 -0.011979 -0.021571 -0.018761 -
2011-02-04 -0.004283 0.006279 -0.005805 0.010473 0.014758 -0.005800
2011-02-11 0.015693 0.022936 0.020645 0.020812 0.025529 0.016449

5 rows x 25 columns

mean_sorted_rets =
mean_sorted _rets = mean_sorted rets.unstack()
(52*mean_sorted rets).round(3)

mom_quintile

1

sorted_rets.mean()

2

pb_quintile

1

0.038

0.134

0.159

0.163

0.140

0.057

0.105

0.116

0.110

0.128

0.068

0.095

0.106

0.103

0.132

0.084

0.091

0.109

0.127

0.128

2
3
4
5

0.001

0.077

0.110

0.094

0.152

Example strategy

e Compute momentum rank each week (1 = highest = best)

e Compute value rank each week (1 = lowest = best)

e Average ranks

e Hold 50 stocks with best (1 = best) ranks each week, equally weighted

e Compare to 50 stocks with worst ranks each week, equally weighted and compare

to all stocks

Best stocks

mom_rank = df.groupby("date", group keys=False).mom.rank(ascending=False)
pb_rank = df.groupby("date", group_keys=False).pb.rank()
avg_rank = (mom_rank + pb_rank) / 2

starting from best = avg rank.groupby("date", group_keys=False).rank()
best = df[starting from_best <= 50]

best rets = best.groupby("date", group_keys=True).ret.mean()

best rets.index = pd.to datetime(best rets.index)

Worst and all stocks

starting from worst = avg rank.groupby(
"date",
group_keys=False
) .rank(ascending=False)
worst = df[starting from_worst <= 50]
worst _rets = worst.groupby("date", group keys=True).ret.mean()
worst_rets.index = pd.to _datetime(worst rets.index)

all rets = df.groupby("date", group keys=True).ret.mean()
all rets.index = pd.to datetime(all rets.index)

Cumulative returns

import matplotlib.pyplot as plt
(1+best_rets).cumprod().plot(label="best")
(1+worst_rets).cumprod().plot(label="worst")
(1+all_rets).cumprod().plot(label="all")
plt.legend()

plt.show()
ﬁ_
—— best
— worst
54 — all
4_
3_

B S o @ P
date

10 *

