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Abstract

Several papers argue that financial economics faces a replication crisis because the ma-

jority of studies cannot be replicated or are the result of multiple testing of too many

factors. We develop and estimate a Bayesian model of factor replication, which leads

to different conclusions. The majority of asset pricing factors: (1) can be replicated,

(2) can be clustered into 13 themes, the majority of which are significant parts of the

tangency portfolio, (3) work out-of-sample in a new large data set covering 93 coun-

tries, and (4) have evidence that is strengthened (not weakened) by the large number

of observed factors.
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Several research fields face replication crises (or credibility crises), including medicine

(Ioannidis, 2005), psychology (Nosek et al., 2012), management (Bettis, 2012), experimental

economics (Maniadis et al., 2017), and now also financial economics. Challenges to the

replicability of finance research take two basic forms:

1. No internal validity. Most studies cannot be replicated with the same data (e.g.,

because of coding errors or faulty statistics) or are not robust in the sense that the

main results cannot be replicated using slightly different methodologies and/or slightly

different data.1 E.g., Hou et al. (2020) state:

“Most anomalies fail to hold up to currently acceptable standards for empirical finance.”

2. No external validity. Most studies may be robustly replicated, but are spurious and

driven by “p-hacking,” that is, finding significant results by testing multiple hypotheses

without controlling the false discovery rate. Such spurious results are not expected to

replicate in other samples or time periods, in part because the sheer number of factors

is simply too large, and too fast growing, to be believable. E.g., Cochrane (2011) asks

for a consolidation of the “factor zoo,” and Harvey et al. (2016) states:

“most claimed research findings in financial economics are likely false.”2

We examine both of these challenges theoretically and empirically. We conclude that neither

criticism is tenable. The majority of factors do replicate, do survive joint modeling of all

factors, do hold up out-of-sample, are strengthened (not weakened) by the large number of

observed factors, are further strengthened by global evidence, and the number of factors can

be understood as multiple versions of a smaller number of themes.

1Hamermesh (2007) contrasts “pure replication” and “scientific replication.” Pure replication is, “check-
ing on others’ published papers using their data,” also called “reproduction” by Welch (2019). Scientific
replication uses, “different sample, different population and perhaps similar, but not identical model.” We
focus on scientific replication. We propose a new modeling framework to jointly estimate factor alphas, we
use robust factor construction methods that are applied uniformly to all factors, and we test both inter-
nal and external validity of prior factor research in several dimensions, including out-of-sample time series
replication and international sample replication. In complementary and contemporaneous work, Chen and
Zimmermann (2020a) consider pure replication, attempting to use the same data and methods as the original
papers for a large number of factors. They are able to reproduce nearly 100% of factors, but Hou et al.
(2020) challenge the scientific replication and Harvey et al. (2016) challenge validity due to multiple testing.

2Similarly, Linnainmaa and Roberts (2018) state “the majority of accounting-based return anomalies,
including investment, are most likely an artifact of data snooping.”
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Figure 1: Replication Rates Versus the Literature

Note: This figure summarizes analyses throughout the paper. Refer to Section 3 for estimation details.

These conclusions rely on new theory and data: First, we show that factors must be

understood in light of economic theory and we develop a Bayesian model that offers a very

different interpretation of the evidence on factor replication. Second, we put together a new

global data set of 153 factors across 93 countries. To help advance replication in finance,

we have made this data set easily accessible to researchers via a direct open-source link to

WRDS, including meticulous documentation of the data and the underlying code base.

Replication results. Figure 1 illustrates our main results and how they relate to the

literature in a sequence of steps. It presents the “replication rate,” that is, the percent of

factors with a statistically significant average excess return. The starting point of Figure 1—

shown as the first bar on the left—is the 35% replication rate reported in the expansive factor

replication study of Hou et al. (2020).

The second bar in Figure 1 shows a 55.6% baseline replication rate in our main sample

of US factors. It is based on significant OLS t-statistics for average raw factor returns, in

direct comparability to the 35% calculation from Hou et al. (2020). This difference arises

because our sample is longer, we add 15 factors to our sample that were previously studied

in the literature but not studied by Hou et al. (2020), and due to minor conservative factor
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construction details that we believe robustify factor behavior.3 We discuss this decomposition

further in Section 2, where we detail our factor construction choices and discuss why we prefer

them.

The Hou et al. (2020) sample includes a number of factors that the original studies found

to be insignificant.4 We exclude these when calculating the replication rate. After we make

this adjustment, the replication rate rises to 61.3%, shown in the third bar in Figure 1.

Alpha, not raw return. Hou et al. (2020) analyze and test factors’ raw returns, but if

we wish to learn about “anomalies,” economic theory dictates the use of risk-adjusted returns.

Raw return gives a misleading inference for the factor if it differs from the alpha: When the

raw return is significant, but the alpha is not, it simply means that the factor is taking risk

exposure and the risk premium is significant, which does not indicate anomalous returns

of the factor. Likewise, when the raw return is insignificant, but the alpha is significant,

then the factor’s efficacy is masked by its risk exposure. An example of this is the low-beta

anomaly, where theory predicts that the alpha of a dollar-neutral low-beta factor is positive,

but its raw return is negative or close to zero (Frazzini and Pedersen, 2014). In this case,

the “failure to replicate” of Hou et al. (2020) is, in fact, support for the betting-against-beta

theory. We analyze alpha to the CAPM, which is the clearest theoretical benchmark model

that is not mechanically linked to other so-called anomalies in the list of replicated factors.

The fourth bar in Figure 1 shows that the replication rate rises to 82.4% based on tests of

factors’ CAPM alpha.

Multiple testing and our Bayesian model. The first four bars in Figure 1 are

based on individual ordinary least squares (OLS) t-statistics for each factor. But Harvey

et al. (2016) rightly point out that this type of analysis suffers from a multiple testing (MT)

problem. Harvey et al. (2016) recommend MT adjustments that raise the threshold for a

t-statistic to be considered statistically significant. We report one such MT correction using

3We use tercile spreads while they use deciles; we use tercile breakpoints from all stocks above the NYSE
20th percentile (i.e., non-micro-caps), they use straight NYSE breakpoints; we always lag accounting data
four months, they use a mixture of updating schemes; we exclude IBES factor due to their relatively short
history; we use capped value-weighting they use straight value-weights; We look at returns over a 1 month
holding period, they use 1, 6 and 12 months. In appendix C we detail how each change affects the replication
rate.

4We identify 34 factors from Hou et al. (2020) for which the original paper did not find a significant alpha
or did not study factor returns (see appendix Table J.1).
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a leading method proposed by Benjamini and Yekutieli (2001). Accounting for MT in this

manner, we find that the replication rate drops to 75.6% (the fifth bar of Figure 1). For

comparison, Hou et al. (2020) consider a similar adjustment and find that their replication

rate drops from 35% with OLS to 18% after MT correction.

However, common frequentist MT corrections can be unnecessarily crude. Our handling

of the MT problem is different. We propose a Bayesian framework for the joint behavior

of all the factors, resulting in an MT correction that sacrifices much less power than its

frequentist counterpart (which we demonstrate via simulation).5 To understand the benefits

of our approach, note first that we impose a prior that all alphas are expected to be zero. The

role of the Bayesian prior is conceptually similar to that of frequentist MT corrections—it

imposes conservatism on statistical inference and controls the false discovery rate. Second,

our joint factor model allows us to conduct inference for all factor alphas simultaneously.

The joint structure among factors leverages dependence in the data in order to draw more

informative statistical inferences (relative to conducting independent individual tests). Our

zero-alpha prior shrinks alpha estimates of all factors, thereby leading to fewer discoveries

(i.e., a lower replication rate), with similar conservatism as a frequentist MT correction. At

the same, however, the model allows us to learn more about the alpha of any individual

factor, borrowing estimation strength across all factors. The improved precision of alpha

estimates for all factors can increase the number of discoveries. Which effect dominates

when we construct our final Bayesian model—the conservative shrinkage to the prior or the

improved precision of alphas—is an empirical question.

In our sample, we find that the two effects exactly offset, which is why the Bayesian

multiple testing view delivers a replication rate identical to the OLS-based rate. Specifically,

our estimated replication rate rises to 82.4% (the sixth bar of Figure 1) using our Bayesian

approach to the MT problem.6 The intuition behind this surprising result is simply that

5A large statistics literature (see Gelman et al., 2013, and references therein) explains how Bayesian
estimation naturally combats MT problems and Gelman et al. (2012) conclude that “the problem of multiple
comparisons can disappear entirely when viewed from a hierarchical Bayesian perspective.” Chinco et al.
(2020) use a Bayesian estimation framework similar to ours for a different (but conceptually related) problem.
They infer the distribution of coefficients in a stock return prediction model to calculate what they dub the
“anomaly base rate.”

6Our Bayesian approach leads to an even larger increase in the replication rate when using pure value-
weighted returns (see Figure C.1 of the appendix) and when considering global evidence outside the US (as
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having many factors (a “factor zoo”) can be a strength rather than a weakness when assessing

the replicability of factor research. It is obvious that our posterior is tighter when a factor

has performed better and has a longer time series. But the posterior is further tightened if

similar factors have also performed well, and if additional data shows that these factors have

performed well in many other countries.7

Benefits of our model beyond the replication rate. One of the key benefits of

Bayesian statistics is that one recovers not just a point estimate but the entire posterior

distribution of parameters. The posterior allows us to make any possible probability calcu-

lation about parameters. For example, in addition to the replication rate, we also calculate

the posterior probability of false discoveries (false discovery rate, FDR) and the posterior

expected fraction of true factors. Moreover, we calculate Bayesian confidence intervals (also

called credibility intervals) for each of these estimates. We find that our 82.4% replication

rate has a tight posterior standard error of 2.8%. The posterior Bayesian FDR is only 0.1%

with a 95% confidence interval of [0.0%, 1.0%], demonstrating the small risk of false dis-

coveries. The expected fraction of true factors is 94.0% with a posterior standard error of

1.3%.

Global replication. Having found a high degree of internal validity of prior research,

we next consider external validity across countries and over time. Regarding the former, we

investigate how our conclusions are affected when we extend the data to include all factors in

a large global panel of 93 countries. The last bar in Figure 1, shows that, based on the global

sample, the final replication rate is 82.4%. This estimate is based on the Bayesian model

extended to incorporate the joint behavior of international data. Because it accounts for the

global correlation structure among factors, the model recognizes that international evidence

is not independent out-of-sample evidence, and uses only the incremental global evidence to

update the overall replicability assessment. And it continues to account for multiple testing.

The global result reflects that factor performance in the US replicates well in an extensive

cross section of countries. Serving as our final estimate, the global factor replication rate

we show later, in Figure 6).
7Taking this intuition further, we can glean additional information from studying whether factors work

in other asset classes, as has been done for value and momentum (Asness et al., 2013), betting against beta
(Frazzini and Pedersen, 2014), time series momentum (Moskowitz et al., 2012), and carry (Koijen et al.,
2018).
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more than doubles that of Hou et al. (2020) by grounding our tests in economic theory

and modern Bayesian statistics. We conclude from the global analysis that factor research

demonstrates external validity in the cross section of countries.

Post-publication performance. McLean and Pontiff (2016) find that US factor returns

“are 26% lower out-of-sample and 58% lower post-publication.”8 Our Bayesian framework

shows that, given a prior belief of zero alpha but an OLS alpha (α̂) that is positive, then

our posterior belief about alpha lies somewhere between zero and α̂. Hence, a positive

but attenuated post-publication alpha is the expected outcome based on Bayesian learning,

rather than a sign of non-reproducibility. Further, when comparing factors cross-sectionally,

the prediction of the Bayesian framework is that higher pre-publication alphas, if real, should

be associated with higher post-publication alphas on average. And that is what we find. We

present new and significant cross-sectional evidence that factors with higher in-sample alpha

generally have higher out-of-sample alpha. The attenuation in the data is somewhat stronger

than predicted by our Bayesian model. We conclude that factor research demonstrates

external validity in the time series, but there appears to be some decay of the strongest

factors that could be due to arbitrage or data mining.9

Publication bias. We also address the issue that factors with strong in-sample per-

formance are more likely to be published while poorly performing factors are more likely

to be unobserved in the literature. Publication bias can influence our full-sample Bayesian

evidence through the empirical Bayes estimation of prior hyperparameters. To account for

this bias, we show how to pick a prior distribution that is unaffected by publication bias by

using only out-of-sample data or estimates from Harvey et al. (2016). Using such priors, the

full-sample alphas are shrunk more heavily toward zero. The result is a slight drop in US

the replication rate to 81.5%. If we add an extra degree of conservatism to the prior, the

replication rate drops to 79.8%. Further, our out-of-sample evidence across time and across

countries is not subject to publication bias.

8Extending the evidence to global stock markets, Jacobs and Müller (2020) find that “the United States
is the only country with a reliable post-publication decline in long-short returns.” Chen and Zimmermann
(2020b) use Bayesian methods to estimate bias-corrected post-publication performance and find that average
returns drop by only 12% after publication in US data.

9Data prior to the sample used in original studies also constitutes out-of-sample evidence (Linnainmaa
and Roberts, 2018; Ilmanen et al., 2021). Our external validity conclusions are the same when we also include
pre-original-study out-of-sample evidence.
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Multidimensional challenge: A Darwinian view of the factor zoo. Harvey et al.

(2016) challenge the sheer number of factors and Cochrane (2011) refers to as “the multi-

dimensional challenge.” We argue that the factor research universe should not be viewed

as hundreds of distinct factors. Instead, factors cluster into a relatively small number of

highly correlated themes, and this property features prominently in our Bayesian model-

ing approach. We propose a factor taxonomy that algorithmically classifies factors into 13

themes possessing a high degree of within-theme return correlation and economic concept

similarity, and low across-theme correlation. The emergence of themes, in which factors are

minor variations on a related idea, is intuitive. For example, each value factor is defined by

a specific valuation ratio, but there are many plausible ratios. Considering their variations

is not spurious alpha-hacking, particularly when the “correct” value signal construction is

debatable.

We estimate a replication rate of greater than 50% in 11 of the 13 themes (based on

the Bayesian model including MT adjustment), the exceptions being “low leverage,” and

“size” factor themes. We also analyze which themes matter when simultaneously controlling

for all other themes. To do so, we estimate the ex post tangency portfolio of 13 theme-

representative portfolios. We find that 10 of the 13 themes enter into the tangency portfolio

with significantly positive weights, where the three displaced themes are “profitability,”

“investment,” and “size.”

Why, the profession asks, have we arrived at a “factor zoo”?10 The answer, evidently, is

because the risk-return tradeoff is complex and difficult to measure. The complexity mani-

fests in our inability to isolate a single, silver bullet characteristic that pins down the risk-

return tradeoff. Classifying factors into themes, we trace the economic culprits to roughly a

dozen concepts. This is already a multidimensional challenge, but it is compounded by the

fact that within a theme there are many detailed choices for how to configure the economic

concept, which results in highly correlated within-theme factors. Together, the themes (and

the factors in them) each make slightly different contributions to our collective understand-

ing of markets. A more positive take on the factor zoo is not as a collective exercise in data

10See Bryzgalova et al. (2019), Chordia et al. (2020), Kelly et al. (2019), Kozak et al. (2020), Green et al.
(2017), and Feng et al. (2020) for other perspectives on high-dimensional asset pricing problems, and Chen
(2020) for an argument why p-hacking cannot explain the existence of so many significant factors.
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mining and false discovery; instead, it is a natural outcome of a decentralized effort in which

researchers make contributions that are correlated with, but incrementally improve on, the

shared body of knowledge.

Economic implications. Our findings have broad implications for finance researchers

and practitioners. We confirm that the body of finance research contains a multitude of

replicable information about the drivers of expected returns. Further, we show that investors

would have profited from factors deemed significant by our Bayesian method, but deemed

insignificant by the frequentist MT method proposed by Harvey et al. (2016). Indeed, Figure

2 plots the returns of the subset of factors discovered by our method but discarded by the

frequentist method. These factors produce an annualized information ratio (IR) of 0.93 in

the US and 1.10 globally (ex. US) over the full sample, with t-statistics above five. If we

restrict analysis to the sample after that of Harvey et al. (2016), the performance differential

remains large and significant. These findings show strong external validity (post original

publications, post Harvey et al. (2016), different countries) and significant economic benefits

of exploiting the joint information in all factor returns rather than simply applying a high

cutoff for t-statistics.11 We also show how the optimal risk-return profile has improved over

time as factors have been discovered. In other words, the Sharpe ratio of the tangency

portfolio has meaningfully increased over time as truly novel drivers of returns have been

discovered. These findings can help inform asset pricing theory.

1 A Bayesian Model of Factor Replication

This section presents our Bayesian model for assessing factor replicability. We first draw out

some basic implications of the Bayesian framework for interpreting evidence on individual

factor alphas, then present a hierarchical structure for simultaneously modeling factors in a

variety themes and across many countries.

11The out-of-sample performance across all significant factors under empirical Bayes is also highly signifi-
cant as shown in Appendix Figure D.1.
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Figure 2: Out-of-sample performance of marginally significant factors

Note: The figure shows the cumulative CAPM alpha of an average of factors significant under our empirical
Bayes framework, but not with the Benjamini-Yekutieli adjustment suggested by Harvey et al. (2016). The
significance cutoffs are re-estimated each year with the available data. Factors are eligible for inclusion after
the sample period in the original paper, so all returns are out-of-sample. The table shows the information
ratio (alpha divided by residual volatility) for the full sample (1990-2020) and the post-Harvey et al. (2016)
sample (2013-2020) with t-statistics in parentheses. The dashed line is at December 2012.

1.1 Learning About Alpha: The Bayes Case

Posterior Alpha

We begin by considering an excess return factor ft. A study of “anomalous” factor returns

requires a risk benchmark, without which we cannot separate distinctive factor behavior from

run of the mill risk compensation. We assume a CAPM benchmark due to its history as a

factor research benchmark for decades, and because it is not mechanically related to any of

the factors that we attempt to replicate (in contrast to, say, the model of Fama and French,

1993, which by construction explains size and value factors). A factor’s net performance

versus the excess market factor (rmt ) is its α:

ft = α + βrmt + εt. (1)

Our Bayesian prior is that the alpha is normally distributed with mean zero and variance

τ 2, or α ∼ N(0, τ 2). The mean of zero implies that CAPM holds on average, and τ governs

potential deviations from CAPM. Intuitively, the higher the confidence in the prior, the

lower is τ . The error term, εt ∼ N(0, σ2), has volatility σ, is independent and identically
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distributed over time, and σ and β are observable.12

The risk-adjusted return, α, is estimated as the average market-adjusted factor return

from T periods of data:

α̂ =
1

T

∑
t

(ft − βrmt ) = α +
1

T

∑
t

εt. (2)

This observed ordinary least squares (OLS) estimate α̂ is distributed N(α, σ2/T ) given the

true alpha, α. From Bayes’ rule, we can compute the posterior distribution of the true alpha

given the data evidence and prior. The posterior exhaustively describes the Bayesian’s

beliefs about alpha at a future time t > T given the past experience, including the posterior

expected factor performance,

E(α|α̂) = E

(
ft − βrmt

∣∣∣∣∣α̂
)
. (3)

We derive the posterior alpha distribution via Bayes’ rule (the derivation, which is standard,

is shown in Appendix A). The posterior alpha is normal with mean

E(α|α̂) = κα̂ (4)

where κ is a shrinkage factor given by

κ =
τ 2

τ 2 + σ2/T
=

1

1 + σ2

τ2T

∈ (0, 1) (5)

and the posterior variance is

Var(α|α̂) = κ
σ2

T
=

1
1

σ2/T
+ 1

τ2

. (6)

The first insight from this posterior is that a Bayesian predicts future returns will have

12Here we seek to derive some simple expressions that illustrate the economic implications of Bayesian logic.
In the empirical implementation, we use slightly richer model, as discussed further below. The empirical
implementation normalizes factors so that σ is given at 10% for all factors, while β must be estimated, but
this does not affect the economic points that we make in this section.

10

Electronic copy available at: https://ssrn.com/abstract=3774514



smaller alpha (in absolute value) than the OLS estimate α̂, because the posterior mean (κα̂)

must lie between α̂ and the prior mean of zero. Said differently, a large observed alpha

might be due to luck and, given the prior, we expect that at least part of this performance

indeed is luck. The more data we have (higher T ), the less shrinkage there is (i.e., κ closer

to 1). Likewise, the stronger is the prior of zero alpha (i.e., lower τ), the heavier is the

shrinkage. We can think of the prior τ in terms of the number of time periods of evidence

that it corresponds to. That is, the posterior mean, E(α|α̂), corresponds to first observing

σ2/τ 2 time periods with an average alpha of zero, followed by T time periods with a average

alpha of α̂.

When evaluating out-of-sample evidence, a positive, but lower, alpha is sometimes inter-

preted as a sign of replication failure. But this is the expected outcome from the Bayesian

perspective (i.e., based on the latest posterior), and can be fully consistent with a high degree

of replicability. In fact, we show later that the comparatively low post-publication factor

performance documented by McLean and Pontiff (2016) turns out to be consistent with the

posterior a Bayesian would have formed given published results. Thus, post-publication re-

sults have tended to confirm the Bayesian’s beliefs and as a result the Bayesian posterior

alpha estimate has been extraordinarily stable over time (see Section 3.2).

Alpha-hacking

Because out-of-sample alpha attenuation is not generally a sign of replication failure, we may

want a more direct probe for non-replicability. We can build such a test into our Bayesian

framework by embedding scope for “alpha-hacking,” or selectively reporting or manipulating

data to artificially make the alpha seem larger. We represent this idea using the following

distribution of factor returns in the in-sample time period t = 1, . . . , T :

ft = α + βrmt + ε̃t + u︸ ︷︷ ︸
εt

. (7)

Here, ε̃t ∼ N(0, σ2) captures usual return shocks and u ∼ N(ε̄, σ2
u) represents return inflation

due to alpha-hacking. The total in-sample return shock εt is normally distributed, N(ε̄, σ̄2),

where ε̄ ≥ 0 is the alpha-hacking bias, and the variance σ̄2 = σ2+σ2
u ≥ σ2 is elevated due to
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the artificial noise created by alpha-hacking.13 Naturally, the false benefits of alpha-hacking

disappear in out-of-sample data, or in other words εt ∼ N(0, σ2) for t > T . The Bayesian

accounts for alpha-hacking as follows:

Proposition 1 (Alpha-hacking) The posterior alpha with alpha-hacking is given by

E(α|α̂) = −κ0 + κhackingα̂ (8)

where κhacking = 1

1+ σ̄2

τ2T

≤ κ and κ0 = κhackingε̄ ≥ 0. Further, κhacking → 0 in the limit of

“pure alpha-hacking,” τ → 0 or σ̄ → ∞.

The Bayesian posterior alpha accounts for alpha-hacking in two ways. First, the estimated

alpha is shrunk more heavily toward zero since the factor κhacking is now smaller. Second,

the alpha is further discounted by the intercept term κ0 due to the bias in the error terms.

We examine alpha-hacking empirically in Section 3.2 in light of Proposition 1. We con-

sider a cross-sectional regression of factors’ out-of-sample (e.g., post-publication) alphas on

their in-sample alphas, looking for the signatures of alpha-hacking in the form of a negative

intercept term or a slope coefficient that is too small. In addition, Section 3.3 shows how to

estimate the Bayesian model in a way that is less susceptible to the effects of alpha hacking

and Appendix A presents additional theoretical results characterizing alpha-hacking.

1.2 Hierarchical Bayesian Model

Shared Alphas: The Case of Complete Pooling

We now embed a critical aspect of factor research into our Bayesian framework: Factors are

often correlated and conceptually related to each other. For concreteness, we begin with a

setting in which the researcher has access to “domestic” evidence in (1) as well as “global”

evidence from an international factor, f g
t , with known exposure βg to the global market

index rgt :

f g
t = α + βgrgt + εgt . (9)

13We note that this elevated variance cannot be detected by looking at the in-sample variance of residual
returns since the alpha-hacking term u does not depend on time t.
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Here, we assume that the true alpha for this global factor is the same as the domestic alpha.

In other words, we have complete “pooling” of information about alpha across the two

samples. As an alternative interpretation, the researcher could have access to two related

factors, say two different value factors in the same country, and assume that they have the

same alpha because they capture the same investment principle.

The global shock, εgt , is normally distributed N(0, σ2), and εgt and εt are jointly normal

with correlation ρ.14 The estimated alpha based on the global evidence is simply its market-

adjusted return:

α̂g =
1

T

∑
t

(f g
t − βgrgt ) . (10)

To see the power of global evidence (or, more generally, the power of observing related

strategies), we consider the posterior when observing both the domestic and global evidence.

Proposition 2 (The Power of Shared Evidence) The posterior alpha given the domes-

tic estimate, α̂, and the global estimate, α̂g, is normally distributed with mean

E(α|α̂, α̂g) = κg

(
1

2
α̂ +

1

2
α̂g

)
. (11)

The global shrinkage parameter is

κg =
1

1 + σ2

τ2T
1+ρ
2

∈ [κ, 1] (12)

which decreases with the correlation ρ, attaining the minimum value, κg = κ, when ρ = 1.

The posterior variance is lower when observing both domestic and global evidence:

Var(α|α̂) ≥ Var(α|α̂, α̂g). (13)

Naturally, the posterior depends on the average alpha observed domestically and globally.

Furthermore, the combined alpha is shrunk toward the prior of zero. The shrinkage factor κg

14The framework can be generalized to a situation where the global shocks have a different volatility and
sample length. In this case, the Bayesian posterior puts more weight on the sample with lower volatility and
longer sample.
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is smaller (heavier shrinkage) if the markets are more correlated because the global evidence

provides less new information. With low correlation, the global evidence adds a lot of

independent information, shrinkage is lighter, and the Bayesian becomes more confident in

the data and less reliant on the prior. The proposition shows that, if a factor has been found

to work both domestically and globally, then the Bayesian expects stronger out-of-sample

performance than a factor that has only worked domestically (or has only been analyzed

domestically).

Two important effects are at play here, and both are important for understanding the

empirical evidence presented below: The domestic and global alphas are shrunk both toward

each other and toward zero. For example, suppose that a factor worked domestically but

not globally, say α̂ = 10% > α̂g = 0%. Then the overall evidence points to an alpha of

1
2
α̂ + 1

2
α̂g = 5%, but shrinkage toward the prior results in a lower posterior, say, 2.5%.

Hence, the Bayesian expects future factor returns in both regions of 2.5%. That shared

alphas are shrunk together is a key feature of a joint model, and it generally leads to different

conclusions than when factors are evaluated independently. Next we consider a perhaps more

realistic model in which factors are only partially shrunk toward each other.

Hierarchical Alphas: The Case of Partial Pooling

We now consider several factors, numbered i = 1, ..., N . Factor i has a true alpha given by

αi = c+ wi. (14)

Here, c is the common component of all alphas, which has a prior distribution given by

N(0, τ 2c ). Likewise, wi is the idiosyncratic alpha component, which has a prior distribution

given by N(0, τ 2w), independent of c and across i. Said differently, we can imagine that nature

first picks of the overall c from N(0, τ 2c ) and then picks the factor-specific αi from N(c, τ 2w).

This hierarchical model is a realistic compromise between assuming that all factor alphas

are completely different (using equation (4) for each alpha separately) and assuming that they

are all the same (using Proposition 2). Rather than assuming no pooling or complete pooling,

the hierarchical model allows factors to have a common component and an idiosyncratic

14
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component.

Suppose we observe factor returns of

f i
t = αi + βirmt + εit (15)

where εit are normally distributed with mean 0 and variance σ2 and Cor(εit, ε
j
t) = ρ ≥ 0 for

all i, j.15 Computing the observed alpha estimates as above, α̂i = 1
T

∑
t(f

i
t −βirmt ), we derive

the posterior in the following result.16

Proposition 3 (Hierarchical Alphas) The posterior alpha of factor i given the evidence

on all factors is normally distributed with mean

E(αi|α̂1, . . . , α̂N) =
1

1 + ρσ2

τ2c T
+ τ2w+(1−ρ)σ2/T

τ2cN

α̂· +
1

1 + (1−ρ)σ2

τ2wT

(
α̂i − 1

1 + τ2w+(1−ρ)σ2/T
(τ2c+ρσ2/T )N

α̂·

)
,

(16)

where α̂· = 1
N

∑
j α̂

j is average alpha. When the number of factors N grows, the limit is

lim
N→∞

E(αi|α̂1, . . . , α̂N) =
1

1 + ρσ2

τ2c T

α̂· +
1

1 + (1−ρ)σ2

τ2wT

(
α̂i − α̂·) . (17)

The posterior variance of factor i’s alpha using the information in all factor returns is lower

than the posterior variance when looking at this factor in isolation:

Var(αi|α̂1, . . . , α̂N) < Var(αi|α̂i). (18)

15Alternatively, we can write the error terms in a similar way to how we write the alphas in (14), namely
εit =

√
ρ ε̃t +

√
1− ρ ε̃it, where ε̃it are idiosyncratic shocks that are independent across factors and of the

common shock ε̃t, with Var(ε̃it) = Var(ε̃t) = σ2. We note that we require (the empirically realistic case)
that ρ ≥ 0 since we cannot have an arbitrarily large number of normal random variables with equal negative
correlation (because the corresponding variance-covariance matrix would not be positive semi-definite for
large enough N).

16The general hierarchical model is used extensively in the statistics literature, see, e.g., Gelman et al.
(2013), but to our knowledge the results in Proposition 3 are not in the literature.
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The posterior variance is decreasing in N and, as N → ∞, its limit is

Var(αi|α̂1, . . . , α̂N) ↘ ρσ2

T

1

1 + ρσ2

τ2c T

+
(1− ρ)σ2

T

1

1 + (1−ρ)σ2

τ2wT

. (19)

The main insight of this proposition is that having data on many factors is helpful for

estimating the alpha of any of them. Intuitively, the posterior for any individual alpha

depends on all of the other observed alphas because they are all informative about the

common alpha component. That is, the other observed alphas tell us whether alpha exists

in general or, said another way, tell us if the CAPM appears to be violated in general.

Further, the factor’s own observed alpha tells us whether this specific factor appears to

be especially good or bad. Using all of the factors jointly reduces posterior variance for

all alphas. In summary, the joint model with hierarchical alphas has the dual benefits of

identifying the common component in alphas and tightening confidence intervals by sharing

information among factors.

To understand the proposition in more detail, consider first the (unrealistic) case in

which all factor returns have independent shocks (ρ = 0). In this case, we essentially know

the overall alpha when we see many uncorrelated factors. Indeed, the average observed

alpha becomes a precise estimator of the overall alpha with more and more observed factors,

α̂· → c. Since we essentially know the overall alpha in this limit, the first term in (17)

becomes 1 × α̂· when ρ = 0 meaning that we don’t need any shrinkage here. The second

term is the outperformance of factor i above the average alpha, and this outperformance is

shrunk toward our prior of zero. Indeed, the outperformance is multiplied by a number less

than one, and this multiplier naturally decreases in the return volatility σ and decreases in

our conviction in the prior (increases in τw).

The posterior variance is also intuitive in the case of ρ = 0. The posterior variance is

clearly lower compared to only observing the performance of factor i itself:

Var(αi|α̂1, α̂2 . . .) =
σ2

T

1

1 + σ2

τ2wT

<
σ2

T

1

1 + σ2

(τ2c+τ2w)T

= Var(αi|α̂i) (20)

based on (19) and (6). With partial pooling, the posterior variance decreases because the
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denominator on the left does not have τ 2c , reflecting that uncertainty about the general alpha

has been eliminated by observing many factors.

In the realistic case where factor returns are correlated (ρ > 0), we see that both the

average alpha α̂· and factor i’s outperformance α̂i − α̂· are shrunk toward the prior of zero.

This is because we cannot precisely estimate the overall alpha even with an infinite number

of correlated factors—the correlated part never vanishes. Nevertheless, we still shrink the

confidence interval, Var(αi|α̂1, . . . , α̂N) ≤ Var(αi|α̂i), since more information is always better

than less.

Multi-level Hierarchical Model

The model development to this point is simplified to draw out its intuition. Our empirical

implementation is based on a more realistic (and slightly more complex) model that takes

into account that factors naturally belong to different economic themes and to different

regions.

In our global analysis, we have N different characteristic signals (e.g., book-to-market)

across K regions, for a total of NK factors (e.g., US, developed, and emerging markets

versions of book-to-market). Each of the N signals belongs to a smaller number of J theme

clusters, where one cluster consists of various value factors, another consists of various mo-

mentum factors, and so on. One level of our hierarchical model allows for partially shared

alphas among factors in the same theme cluster. Another level allows for commonality

across regions among factors associated with the same underlying characteristic, capturing

for example the connection between the book-to-market factor in different markets.

Mathematically, this means that an individual factor i has an alpha of

αi = αo + cj + sn + wi. (21)

Concretely, suppose factor i ∈ {1, . . . , NK} is the book-to-market factor in the US region.

Part of its alpha is driven by a component that is common to all factors, αo, which we

dogmatically fix at zero to be conservative. In addition, this factor i belongs to the value

cluster j ∈ {1, . . . , J}, which contributes a cluster-specific alpha cj ∼ N(0, τ 2c ). Next, since

17
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factor i is based on book-to-market characteristic n ∈ {1, . . . , N}, it has an incremental

signal-specific alpha of sn ∼ N(0, τ 2s ) that is shared across regions—e.g., it’s the common

behavior among book-to-market factors regardless of geography. Finally, wi ∼ N(0, τ 2w) is

factor i’s idiosyncratic alpha, namely the incremental alpha that is unique to the US version

of book-to-market.

We write this model in vector form as17

α = αo 1NK +Mc+ Zs+ w (22)

where α = (α1, . . . , αNK)′, c = (c1, . . . , cJ)′, s = (s1, . . . , sN)′, w = (w1, . . . , wNK)′, M is

the NK × J matrix of cluster memberships, and Z is the NK × N matrix indicating the

characteristic that factor i is based on. In particular, Mi,j = 1 if factor i is in cluster j and

Mi,j = 0 otherwise. Likewise, Zi,n = 1 if factor i is based on characteristic n and Zi,n = 0

otherwise. This hierarchical model implies that the prior variance of alpha, denoted Ω, is18

Ω = Var(α) = MM ′τ 2c + ZZ ′τ 2s + INKτ
2
w. (23)

In some cases, we analyze this model within a single region, K = 1 (for example, in

our US-only analysis). In this case, there is no difference between signal-specific alphas and

idiosyncratic alphas, so we collapse one level of the model by setting τ s = 0 and sn = 0

for n ∈ {1, . . . , N}. In any case, the following result shows how to compute the posterior

distribution of all alphas based on the prior uncertainty, Ω, and a general variance-covariance

matrix of return shocks, Σ = Var(ε). This result is at the heart of our empirical analysis.

Proposition 4 In the multi-level hierarchical model, the posterior of the vector of true al-

phas is normally distributed with posterior mean

E(α|α̂) =
(
Ω−1 + TΣ−1

)−1 (
Ω−11NKα0 + TΣ−1α̂

)
(24)

17The notation 1N refers to an N × 1 vector of ones and IN is the N ×N identity matrix.
18Stated differently, each diagonal element of Ω is τ2c + τ2s + τ2w. Further, if i ̸= k, then the (i, k)th element

of Ω is τ2c + τ2s if i and k are constructed from the same signal in the same cluster in different regions, it is
τ2c if i and k are constructed from different signals in the same cluster, and it is 0 if i and k are in different
clusters.

18
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and posterior variance

Var(α|α̂) =
(
Ω−1 + TΣ−1

)−1
. (25)

As noted above, we set the mean prior alpha to zero (α0 = 0) in our empirical implemen-

tation. This prior is based on economic theory and leads to a conservative shrinkage toward

zero as seen in (24). We note that, in the data, the observed alphas are mostly positive,

not centered around zero. However, these positive alphas are related to the way that factors

are signed, namely according to the convention in the original paper, which almost always

leads to a positive factor return in the original sample. However, if we view this signing

convention as somewhat arbitrary, then a symmetry argument implies that a prior of zero is

again natural. Said differently, factor means would be centered around zero if we changed

signs arbitrarily, so our prior is agnostic about these signs.

1.3 Bayesian Multiple Testing and Empirical Bayes Estimation

Frequentist MT corrections embody a principle of conservatism that seeks to limit false

discoveries, controlling the family-wise error rate (FWER) or the false discovery rate (FDR).

Leading frequentist methods achieve this by widening confidence intervals and raising p-

values, but do not alter the underlying point estimate.

Bayesian Multiple Testing

A large statistics literature describes how Bayesian modeling is effective for making reliable

inferences in the face of multiple testing.19 Drawing on this literature, our hierarchical model

is a prime example of how Bayesian methods accomplish their MT correction based on two

key model features.

First is the model prior, which imposes statistical conservatism in analogy to frequentist

MT methods. It anchors the researcher’s beliefs to a sensible default (e.g., all alphas are zero)

in case the data are insufficiently informative about the parameters of interest. Reduction

19See Gelman et al. (2012); Berry and Hochberg (1999); Greenland and Robins (1991); Efron and Tibshirani
(2002), among others. See Gelman (2016) for an intuitive, informal discussion of the topic.
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of false discoveries is achieved first by shrinking estimates toward the prior. When there is

no information in the data, the alpha point estimate is the prior mean and there are no false

discoveries. As data evidence accumulates, posterior beliefs migrate away from the prior

toward the OLS alpha estimate. In the process, discoveries begin to emerge, though they

remain dampened relative to OLS. In the large data limit, Bayesian beliefs converge on OLS

with no MT correction, which is justified because in the limit there are no false discoveries.

In other words, the prior embodies a particularly flexible form conservatism—the Bayesian

model decides how severe of an MT correction to make based on the informativeness of the

data.

Second is the hierarchical structure that captures joint behavior of factors. Modeling

factors jointly means that each alpha is shrunk toward its cluster mean (i.e., toward related

factors), in addition to being shrunk toward the prior of zero. So, if we observe a cluster

of factors in which most perform poorly, then this evidence reduces the posterior alpha

even for the few factors with strong performance—another form of Bayesian MT correction.

In addition to this Bayesian discovery control coming through shrinkage of the posterior

mean alpha, the Bayesian confidence interval also plays an important role and changes as

a function of the data. Indeed, having data on related factors leads to a contraction of the

confidence intervals in our joint Bayesian model. So while alpha shrinkage often has the

effect of reducing discoveries, the increased precision from joint estimation has the opposite

effect of enhancing statistical power and thus increases discoveries.

In summary, a typical implementation of frequentist MT corrections estimates parameters

independently for each factor, leaves these parameters unchanged, but inflates p-values to

reduce the number of discoveries. In contrast, our hierarchical model leverages dependence

in the data to efficiently learn about all alphas simultaneously. All data therefore helps to

determine the center and width of each alpha’s confidence interval (Propositions 3 and 4).

This leads to more precise estimates with “built-in” Bayesian MT correction.

Empirical Bayes Estimation

Given the central role of the prior, it might seem problematic that the severity of the Bayesian

MT adjustment is at the discretion of the researcher. A powerful (and somewhat surprising)
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aspect of a hierarchical model is that the prior can be learned in part from the data. This

idea is formalized in the idea of “empirical Bayes (EB)” estimation, which has emerged as

a major toolkit for navigating multiple tests in high-dimensional statistical settings (Efron,

2012).

The general approach to EB is to specify a multi-level hierarchical model, and then to

use the dispersion of estimated effects within each level to learn about the prior parameters

for that level. In our setting, the specific implementation of EB is dictated by Proposition 4.

We first compute each factor’s abnormal return, α̂, as the intercept in a CAPM regression on

the market excess return. Next, we set the overall alpha prior mean, αo, to zero to enforce

conservatism in our inferences.

From here, the benefits of EB kick in: The realized dispersion in alphas across factors

helps to determine the appropriate level of conviction for the prior (that is, the appropriate

values for τ 2c , τ
2
s , and τ 2w). For example, if we compute the average alpha for each cluster, ĉj

(e.g., the average value alpha, the average momentum alpha, and so on), the cross-sectional

variation in ĉj suggests that τ 2c
∼= 1

J−1

∑J
j=1(ĉ

j − ĉ·)2. The same idea applies to τ 2s . Likewise,

variation in observed alphas after accounting for hierarchical connections is informative about

τ 2w
∼= 1

NK−N−J

∑N
i=1(ŵ

i)2, where ŵ = α̂−Mĉ− Zŝ.

The above variances illustrate the point that EB can help calibrate prior variances using

the data itself. But those calculations are too crude, because they ignore sampling varia-

tion coming from the noise in returns, ε, which has covariance matrix Σ. Empirical Bayes

estimates the prior variances by maximizing the prior likelihood function of the observed

alphas, α̂ ∼ N(0,Ω(τc, τs, τw) + Σ̂/T ), where the notation emphasizes that Ω depends on

τc, τs, and τw according to (23). The likelihood function accounts for sampling variation

through the a plug-in estimate of the covariance matrix of factor return shocks, Σ̂.20 We

collect the resulting hyper-parameters in τ , that is, τc, τs, τw, Σ̂, and βi.

Bayesian FDR and FWER

With the EB estimates (τ) on hand, we can compute the posterior distribution of the alphas

from Proposition 4. From the posterior, we can in turn compute Bayesian versions of the

20We discuss the details of our EB estimation procedure in Appendix B.
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FDR and FWER. Suppose that we consider a factor to be “discovered” if its z-score is

greater than the critical value z̄ = 1.96:

E(αi|α̂1, . . . , α̂N , τ)√
Var(αi|α̂1, . . . , α̂N , τ)

> z̄. (26)

Equivalently, factor i is discovered if p-nulli < 2.5%,21 where we use the posterior to compute

p-nulli = Pr(αi < 0|α̂1, . . . , α̂N , τ). (27)

In words, p-nulli is the posterior probability that the null hypothesis is true, which is the

Bayesian version of a frequentist p-value. Said differently, it is the posterior probability of a

“false discovery,” namely the probability that the true alpha is actually non-positive.

We can further compute the Bayesian FDR as:

FDRBayes = E

(∑
i 1{i false discovery}∑

i 1{i discovery}

∣∣∣∣α̂1, . . . , α̂N , τ

)
(28)

where we condition on the data including at least one discovery (so the denominator is not

zero), otherwise FDR is set to zero (see Benjamini and Hochberg, 1995).

The following proposition is a novel characterization of the Bayesian FDR, and shows

that it is the posterior probability of a false discovery, averaged across all discoveries:

Proposition 5 (Bayesian FDR) Conditional on the parameters of the prior distribution

τ and data with at least one discovery, the Bayesian false discovery rate can be computed as:

FDRBayes =
1

#discoveries

∑
i discovery

p-nulli . (29)

and is bounded, FDRBayes ≤ 2.5%.

This result shows explicitly how the Bayesian framework controls the false discovery rate

without the need for additional MT adjustments.22 The definition of a discovery ensures

21We use a critical value of 2.5% rather than 5% because the 1.96 cut-off corresponds to a 2-sided test,
while false discoveries are only on one side in the Bayesian framework.

22Efron (2007) includes related analysis but, to our knowledge, this particular result is new.
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that at most 2.5% of the discoveries are false according to the Bayesian posterior, which is

exactly the right distribution for assessing discoveries from the perspective of the Bayesian.

Further, if many of the discovered factors are highly significant (as is the case in our data),

then the Bayesian FDR is much lower than 2.5%.23

We can also compute a Bayesian version of the family-wise error rate, which is the

probability of making one or more false discoveries in total:

FWERBayes =Pr

(∑
i

1{i false discovery} ≥ 1

∣∣∣∣α̂1, . . . , α̂N , τ

)
. (30)

If we define a discovery as in (26) using the standard critical value z̄ = 1.96, then we do

not necessarily control the family-wise error rate, FWERBayes, which is a harsh criterion

that is concerned with the risk of a single false discovery without regard for the number of

missed discoveries. FWERBayes is a probability that can be computed from the posterior

so it is straightforward to choose a critical value z̄ to ensure FWERBayes ≤ 5% or any

other level one prefers. The main point is that the Bayesian approach to replication lends

itself to any inferential calculation the researcher desires because the posterior is a complete

characterization of Bayesian beliefs about model parameters.

A Comparison of Frequentist and Bayesian False Discovery Control

We illustrate the benefits of Bayesian inference for our replication analysis via simulation. We

assume a factor generating process based on the hierarchical model above and, for simplicity,

consider a single region (as in our empirical US-only analysis), removing sn and τ 2s from

equations (21) and (23). We analyze discoveries as we vary the prior variances τc and τw.

The remaining parameters are calibrated to our estimates for the US region in our empirical

analysis below.

We simulate an economy with 130 factors in 13 different clusters of 10 factors each,

observed monthly over 70 years. We assume that the mean alpha, αo, is zero. We then draw

23Proposition 5 formalizes the argument of Greenland and Robins (1991) that “from the empirical-Bayes
or Bayesian perspective, multiple comparisons are not really a ‘problem.’ Rather, the multiplicity of com-
parisons provides an opportunity to improve our estimates through judicious use of any prior information
(in the form of model assumptions) about the ensemble of parameters being estimated.”
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a cluster alpha from cj ∼ N(0, τ 2c ) and a factor-specific alpha as wi ∼ N(0, τ 2w). Based on

these alphas, we generate realized returns by adding Gaussian noise.24

We compute p-values separately using OLS with no adjustment or adjusting with the

Benjamini-Yekutieli (BY) method. We also use EB to estimate the posterior alpha distribu-

tion, treating τc and τw as known in order to simplify simulations and focus on the Bayesian

updating. For OLS and BY, a discovery occurs when the alpha estimate is positive and

the two-sided p-value is below 5%. For EB, we consider it a discovery when the posterior

probability that alpha is negative is less that 2.5%. For each pair of τc and τw, we draw

10,000 simulated samples, and report average discovery rates over all simulations.

Figure 3 reports alpha discoveries based on the OLS, BY, and EB approaches. For

each method, we report the true FDR in the top panels (we know the truth since this is a

simulation) and the “true discovery rate”25 in the bottom panels.

When idiosyncratic variation in true alphas is small (left panels with τw = 0.01%) and the

variation in cluster alphas is also small (values of τc near zero on the horizontal axis), alphas

are very small and true discoveries are unlikely. In this case, the OLS false discovery rate can

be as high as 25% as seen in the upper left panel. However, both BY and EB successfully

correct this problem and lower the FDR. The lower left panel shows that the BY correction

pays a high price for its correction in terms of statistical power when τc is larger. In contrast,

EB exhibits much better power to detect true positives while maintaining a similar false

discovery control as BY. In fact, when there are more discoveries to be made in the data (as

τc increases), EB becomes even more likely to identify true positives than OLS. This is due

to the joint nature of the Bayesian model, whose estimates are especially precise compared

to OLS due to EB’s ability to learn more efficiently from dependent data. This illustrates

a point of Greenland and Robins (1991) that “Unlike conventional multiple comparisons,

empirical-Bayes and Bayes approaches will alter and can improve point estimates and can

24The noise covariance matrix has a block structure calibrated to our data, with a correlation of 0.58
among factors in the same cluster and a correlation of 0.02 across clusters. The residual volatility for each
factor is 10% per annum.

25We define the true discovery rate to be the number of significantly positive alphas according to, respec-
tively, OLS, BY, and EB divided by the number of truly positive alphas. Given our simulation structure, half
of the alphas are expected to be positive in any simulation. Some of these will be small (i.e., economically
insignificant) positives, so a testing procedure would require a high degree of statistical power to detect
them. This is why the true discovery rate is below one even for high values of τc.
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Figure 3: Simulation Comparison of False Discovery Rates

Note: The upper panels show the realized false discovery rate computed as the proportion of discovered
factors for which the true alpha is negative, averaged over 10,000 simulations. The lower panels show the
true discovery rate computed as the number of discoveries where the true alpha is positive divided by the
total number of factors where the true alpha is positive. The left and right panels use low and high values
of idiosyncratic variation in alphas (τw), respectively. The x-axis varies cluster alpha dispersion, τc.

provide more powerful tests and more precise (narrower) interval estimators.” When the

idiosyncratic variation is larger (τw = 0.20%), there are many more true discoveries to be

made, so the false discovery rate tends to be low even for OLS with no correction. Yet in

the lower right panel we continue to see the costly loss of statistical power suffered by the

BY correction.

In summary, EB accomplishes a flexible MT adjustment by adapting to the data gener-

ating process. When discoveries are rare so that there is a comparatively high likelihood of

false discovery, EB imposes heavy shrinkage and behaves similarly to the conservative BY

correction. In this case, the benefit of conservatism costs little in terms of power exactly

because true discoveries are rare. Yet when discoveries are more likely, EB behaves more

like uncorrected OLS, giving it high power to detect discoveries and suffering little in terms

of false discoveries because true positives abound.

The limitations of frequentist MT corrections are well studied in the statistics literature.
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Berry and Hochberg (1999) note that “these procedures are very conservative (especially

in large families) and have been subjected to criticism for paying too much in terms of

power for achieving (conservative) control of selection effects.” The reason is that, while

inflating confidence intervals and p-values indeed reduces the discovery of false positives, it

also reduces power to detect true positives.

Much of the discussion around MT adjustments in the finance literature fails to consider

the loss of power associated with frequentist corrections. But, as Greenland and Hofman

(2019) point out, this tradeoff should be a first-order consideration for a researcher navigating

multiple tests, and frequentist MT corrections tend to place an implicit cost on false positives

that can be unreasonably large. Unlike some medical contexts for example, there is no

obvious motivation for asymmetric treatment of false positives and missed positives in factor

research. The finance researcher may be willing to accept the risk of a few false discoveries

to avoid missing too many true discoveries. In statistics, this is sometimes discussed in terms

of an (abstract) cost of Type I versus Type II errors,26 but in finance we can make this cost

concrete: We can look at the profit of trading on the discovered factors, where the cost of

false discoveries is then the resulting extra risk and money lost (Section 3.3).

2 A New Public Data Set of Global Factors

We study a global dataset with 153 factors in 93 countries. In this section, we provide

a brief overview of our data construction. We have posted the code along with extensive

documentation detailing every implementation choice that we make for each factor.27

Factors

The set of factors we study is based on the exhaustive list compiled by Hou et al. (2020). They

study 202 different characteristic signals from which they build 452 factor portfolios. The

26As Greenland and Robins (1991) point out, “Decision analysis requires, in addition to the likelihood
function, a loss function, which indicates the cost of each action under the various possible values for the
unknown parameter (benefits would be expressed as negative costs). Construction of a loss function requires
one to quantify costs in terms of dollars, lives lost, or some other common scale.”

27It is available at https://jkpfactors.com/ and at https://github.com/bkelly-lab/

ReplicationCrisis.
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proliferation is due to treating 1, 6, and 12-month holding periods for a given characteristic

as different factors, and due to their inclusion of both annual and quarterly updates of some

accounting-based factors. In contrast, we focus on a 1-month holding period for all factors,

and we only include the version that updates with the most recent accounting data (which

could be either annual or quarterly). Lastly, we exclude a small number of factors for which

data is not available globally. This gives us a set of 180 feasible global factors. For this

set, we exclude factors based on industry or analyst data because they have comparatively

short samples.28 This leaves us with 138 factors. Finally, we add 15 factors studied in the

literature that were not included in Hou et al. (2020).

For each characteristic, we build the 1-month holding period factor return within each

country as follows. First, in each country and month, we sort stocks into characteristic ter-

ciles (top/middle/bottom third) with breakpoints based on non-micro stocks in that coun-

try.29 For each tercile, we compute its “capped value weight” return, meaning that we

weight stocks by their market equity winsorized at the NYSE 80th percentile. This construc-

tion ensures that tiny stocks have tiny weights and any one mega stock does not dominate

a portfolio, seeking to create tradable, yet balanced, portfolios.30 The factor is then defined

as the high-tercile return minus the low-tercile return, corresponding to the excess return of

a long-short zero-net-investment strategy. The factor is long (short) the tercile identified by

the original paper to have the highest (lowest) expected return.

We scale all factors such that their monthly idiosyncratic volatility is 10%/
√
12 (i.e., 10%

annualized), which ensures cross-sectional stationarity and a prior that factors are similar in

terms of their information ratio (i.e., appraisal ratio). Finally, we compute each factor’s α̂i

via an OLS regression on a constant and the corresponding region’s market portfolio.

For a factor return to be non-missing, we require that it has at least 5 stocks in each of

28Global industry codes (GICS) are only available from 2000 and I/B/E/S data from the mid-1980’s (but
coverage in early years is somewhat sparse).

29Specifically, we start with all non-micro stocks in a country (i.e., larger than NYSE 20th percentile) and
sort them into three groups of equal numbers of stocks based on the characteristic, say book-to-market. Then
we distribute the micro-cap stocks into the three groups based on the same characteristic breakpoints. This
process ensures that the non-micro stocks are distributed equally across portfolios, creating more tradable
portfolios.

30For robustness, Figure C.1 of the appendix reports our replication results to using standard, uncapped
value weights to construct factors.
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the long and short legs. We also require a minimum of 60 non-missing monthly observations

for each country-specific factor for inclusion in our sample. When grouping countries into

regions (US, developed ex. US, and emerging) we use the MSCI development classification

as of January 7th 2021. When aggregating factors across countries, we use capitalization-

weighted averages of the country-specific factors. For the developed and emerging market

factors, we require that at least three countries have non-missing factor returns.

Clusters

We group factors into clusters using hierarchical agglomerative clustering (Murtagh and

Legendre, 2014). We define the distance between factors as one minus their pairwise corre-

lation and use the linkage criterion of Ward (1963). The correlation is computed based on

CAPM-residual returns of US factors signed as in the original paper. Appendix Figure I.1

shows the resulting dendrogram, which illustrates the hierarchical clusters identified by the

algorithm. Based on the dendrogram, we choose 13 clusters that demonstrate a high degree

of economic and statistical similarity. The cluster names indicate the types of characteristics

that dominate each group: Accruals∗, Debt Issuance∗, Investment∗, Leverage∗, Low risk,

Momentum, Profit Growth, Profitability, Quality, Seasonality, Size∗, Skewness∗, and Value,

where the star (∗) indicates that these factors bet against the corresponding characteristic

(e.g., accrual factors go long stocks with low accruals while shorting those with high accru-

als). Appendix Figure I.2 shows that the average within-cluster pairwise correlation is above

0.5 for 9 out of 13 clusters, and Table J.1 provides details on the cluster assignment, sign

convention, and original publication source for each factor.

Data and Characteristics

Return data is from CRSP for the US (beginning in 1926) and from Compustat for all

other countries (beginning in 1986 for most developed countries).31 All accounting data is

from Compustat. For international data, all variables are measured in US dollars (based on

exchange rates from Compustat) and excess returns are relative to the US treasury bill rate.

31Appendix Table J.3 shows start date and other information for all countries included in our dataset.
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To alleviate the influence of data errors in the international data, we winsorize returns from

Compustat at 0.1% and 99.9% each month.

We restrict our focus to common stocks that are identified by Compustat as the primary

security of the underlying firm and assign stocks to countries based on the country of their

exchange.32 In the US, we include delisting returns from CRSP. If a delisting return is

missing and the delisting is for a performance-based reason, we set the delisting return to

−30% following Shumway (1997). In the global data, delisting returns are not available, so

all performance-based delistings are assigned a return of −30%.

We build characteristics in a consistent way, that sometimes deviates from the exact

implementation used in the original reference. For example, for characteristics that use book

equity, we always follow the method in Fama and French (1993). Furthermore, we always use

the most recent accounting data, whether annual or quarterly. Quarterly income and cash

flow items are aggregated over the previous four quarters to avoid distortions from seasonal

effects. We assume that accounting data is available four months after the fiscal period end.

When creating valuation ratios, we always use the most recent price data following Asness

and Frazzini (2013). Section K in the internet appendix contains a detailed documentation

of our data set.

Empirical Bayes Estimation

We estimate the hyperparameters and the posterior alpha distributions of our Bayesian model

via EB. Appendix B provides details on the EB methodology and the estimated parameters.

3 Empirical Assessment of Factor Replicability

We now report replication results for our global factor sample. We first present an internal

validity analysis by studying US factors over the full sample. Then we analyze external

validity in the global cross section and in the time series (post-publication factor returns).

32Compustat identifies primary securities in the US, Canada and rest of the world. This means that some
firms can have up to three securities in our data set. In practice, the vast majority of firms (97%) only have
one security in our sample at a given point in time.
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Figure 4: Alpha Distributions for US Factors

Note: The figure reports point estimates and confidence intervals for US factors. The upper left reports OLS
estimates. The upper right uses the OLS point estimate but adjusts the confidence interval following the
BY procedure. The lower left panel shows our EB posterior confidence intervals using only US data. The
lower right continues to show EB results for US factors, but estimates the US factor posterior from global
data rather than US-only data. Blue (red) confidence intervals correspond to factors that were significant in
the original study in the literature and that we find significant (insignificant) based on the method in each
panel. Green intervals correspond to factors that the original study find insignificant or do not evaluate in
terms of average return significance. The order of factors is the same in all panels and is arranged from
lowest OLS alpha to highest. Table J.2 shows the factor names arranged in the same order.

3.1 Internal Validity

We report full sample performance of US factors in Figure 4. Each panel illustrates the

CAPM alpha point estimate of each factor corresponding to the dot at the center of the

vertical bars. Vertical bars represent the 95% confidence interval for each estimate. Bar

colors differentiate between three types of factors. Blue shows factors that are significant

in the original study and remain significant in our full sample. Red shows factors that are

significant in the original study but are insignificant in our test. Green shows factors that

are not significant in the original study, but are included in the sample of Hou et al. (2020).

The four panels in Figure 4 differ in how the alphas and their confidence intervals are

estimated. The upper left panel reports the simple OLS estimate of each alpha, α̂ols, and
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the 95% confidence intervals based on unadjusted standard errors, α̂ols±1.96×SEols.
33 The

factors are sorted by OLS α̂ estimate, and we use this ordering for the other three panels

as well. We find that the OLS replication rate is 82.4%, computed as the number of blue

factors (98) divided by the sum of red and blue factors (119). Based on OLS tests, factors

are highly replicable.

The upper right panel repeats this analysis using the MT adjustment of Benjamini and

Yekutieli (2001) (denoted BY), which is advocated by Harvey et al. (2016) and implemented

by Hou et al. (2020). This method leaves the OLS point estimate unchanged, but inflates the

p-value. We illustrate this visually by widening the alpha confidence interval. Specifically,

we find the BY-implied critical value34 in our sample to be a t-statistic of 2.7, and we

compute the corresponding confidence interval as α̂ols ± 2.7 × SEols. We deem a factor as

significant according to the BY method if this interval lies entirely above zero. Naturally,

this widening of confidence intervals produces a lower replication rate of 75.6%. However,

the BY correction does not materially change the OLS-based conclusion that factors appear

highly replicable.

The lower left panel is based on our empirical Bayes estimates using the full sam-

ple of US factors. For each factor, we use Proposition 4 to compute its posterior mean,

E(αi|(α̂j)j any US factor), shown as the dot at the center of the confidence interval. These

dots change relative to the OLS estimates, in contrast to BY and other frequentist MT

methods that only change the size of the confidence intervals. We also compute the pos-

terior volatility to produce Bayesian confidence intervals, E(αi|(α̂j)j any US factor) ± 1.96 ×

σ(αi|(α̂j)j any US factor). The replication rate based on Bayesian model estimates is 82.4%,

larger than BY and, coincidentally, the same as the OLS replication rate. This replication

rate has a built-in conservatism from the zero-alpha prior, and it further accounts for the

multiplicity of factors because each factor’s posterior depends on all of the observed evidence

in the US (not just own-factor performance).

The lower right panel again reports EB estimates for US factors, but now we allow the

33We define SEols as the diagonal of the alpha covariance matrix Σ̂, which we estimate according to
Appendix B.

34We compute the BY-implied critical value as the average of the t-statistic of the factor that is just
significant based on BY (the factor with the highest BY-adjusted p-value below 5%) and the t-statistic of
the factor that is just insignificant (the factor with the lowest BY-adjusted p-value above 5%).
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posterior to depend not just on US data, but on data from all over the world. That is,

we compute the posterior mean and variance for each US factor conditional on the alpha

estimates for all factors in all regions. The resulting replication rate is 81.5%, which is slightly

lower than the EB replication rate using only US data. Some posterior means are reduced

due to the fact that some factors have not performed as well outside the US, which affects

posterior means for the US through the dependence among global alphas. For example,

when the Bayesian model seeks to learn the true alpha of the “US change in book equity”

factor, the Bayesian’s conviction regarding positive alpha is reduced by taking into account

that the international version of this factor has underperformed the US version.35

To further assess internal validity, we investigate the replication rate for US factors when

those factors are constructed from subsamples based on stock size. One of the leading

criticisms of factor research replicability is that results are driven by illiquid small stocks

whose behavior in large part reflects market frictions and microstructure as opposed to just

economic fundamentals or investor preferences. In particular, Hou et al. (2020) argue that

they find a low replication rate because they limit the influence of micro-caps. We find that

factors demonstrate a high replication rate throughout the size distribution. Panel A of

Figure 5 reports replication rates for US size categories shown in the five bars: mega stocks

(largest 20% of stocks based on NYSE breakpoints), large stocks (market capitalization

between the 80th and 50th percentile of NYSE stocks), small stocks (between the 50th and

20th percentile), micro stocks (between the 20th and 1st percentile), and nano stocks (market

capitalization below the 1st percentile).

We see that the EB replication rates in mega and large stock samples are 77.3% and

79.8%, respectively. This is only marginally lower than the overall US sample replication

rate of 82.4%, indicating that criticisms of factor replicability based on arguments around

stock size or liquidity are largely groundless. For comparison, small, micro, and nano stocks

deliver replication rates of 85.7%, 85.7% and 68.1%, respectively.

In Panel B of Figure 5, we report US factor replication rates by theme cluster. 11 out of 13

35To provide a few more details on this example, the US factor based on annual change in book equity
(be gr1a) has a posterior volatility of 0.095% using only US data and 0.077% using global data, leading to a
tighter confidence interval with the global data. However, the posterior mean is 0.22% using only US data
and 0.13% using global data.
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Figure 5: US Replication Rates By Size Group and Theme Cluster

Note: Panel A reports replication rates for US factors formed from subsamples defined by stocks’ market
capitalization using our EB method. Panel B reports replication rates for US factors in each theme cluster.

themes are replicable with a rate of 50% or better, with the exceptions being the low leverage

and size themes. To understand these exceptions, we note that size factors are stronger in

emerging markets (bottom panel of Figure G.1) and among micro and nano stocks (bottom

panels of Figure G.2). The theoretical foundation of the size effect is a compensation for

market illiquidity (Amihud and Mendelson, 1986) and market liquidity risk (Acharya and

Pedersen, 2005). Theory predicts that the illiquidity (risk) premium should be the same

order of magnitude as the differences in trading costs and these differences are simply much

larger in emerging markets and among micro stocks.

Another reason why some factors and themes appear insignificant is that we are not
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accounting for other factors. Factors published after 1993 are routinely benchmarked to

the Fama-French three-factor model (and, more recently, to the updated five-factor model).

Some factors are insignificant in terms of raw return or CAPM alpha, but their alpha becomes

significant after controlling for other factors. This indeed explains the lack of replicability

for the low leverage theme. While CAPM alphas of low leverage factors are insignificant, we

find that it is one of the best performing themes once we account for multiple factors (see

Section 3.4 below).

3.2 External Validity

We find a high replication rate in our full-sample analysis, indicating that the large majority

of factors are reproducible at least in-sample. We next study the external validity of these

results in international data and in post-publication US data.

Global Replication

Figure 6 shows corresponding replication rates around the world. We report replication

rates from four testing approaches: (1) OLS with no adjustment; (2) OLS with Benjamini-

Yekutieli MT adjustment; (3) the EB posterior conditioning only on factors within a region

(“Empirical Bayes – Region”); and (4) EB conditioning on factors in all regions (“Empirical

Bayes – All”). Even when using all global data to update the posterior of all factors, the

reported Bayesian replication rate applies only to the factors within the stated region.

The first set of bars establishes a baseline by showing replication rates for the US sample,

summarizing the results from Figure 4. The next two sets of bars correspond to the developed

ex. US sample and the emerging markets sample, respectively.36 Each region factor is a

capitalization-weighted average of that factor among countries within a given region, and

the replication rate describes the fraction of significant CAPM alphas for these regional

factors.

OLS replication rates in developed and emerging markets are generally lower than in

36The developed and emerging samples are defined by the MSCI development classification and include
23 and 27 countries, respectively. The remaining 43 countries in our sample that are classified as neither
developed nor emerging by MSCI do not appear in our developed and emerging region portfolios, but they
are included in the “world” versions of our factor portfolios.
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Figure 6: Replication Rates in Global Data

Note: We report replication rates for factors in three global regions (US, developed ex. US, and emerging)
and for the world as a whole. A factor in a given region is the capitalization-weighted average factor for
countries in that region. We report OLS replication rates with no adjustment and with Benjamini-Yekutieli
multiple testing adjustment. We also report replication rates based on the empirical Bayes posterior. We
consider two EB methods. In both methods, the replication rate refers only to factors within the region of
interest, but the posterior is computed by conditioning either on data from that region alone (“Empirical
Bayes – Region”) or on the full global sample (“Empirical Bayes – All”). We deem a factor successfully
replicated if its 95% confidence interval excludes zero for a given method.

the US, and the frequentist Benjamini-Yekutieli correction has an especially large negative

impact on replication rate. This is a case in which the Bayesian approach to MT is especially

powerful. Even though the alphas of all regions are shrunk toward zero, the global infor-

mation set helps EB achieve a high degree of precision, narrowing the posterior distribution

around the shrunk point estimate. We can see this in increments. First, the EB replication

rate using region-specific data (“Empirical Bayes – Region” in the figure) is just below the

OLS replication rate but much higher than the Benjamini-Yekutieli rate. When the posterior

leverages global data (“Empirical Bayes – All” in the figure), the replication rate is higher

still, reflecting the benefits of sharing information across regions, as recommended by the

dependence among alphas in the hierarchical model.

Finally, we use the global model to compute, for each factor, the capitalization-weighted

35

Electronic copy available at: https://ssrn.com/abstract=3774514



y = 0.079 + 0.67 ⋅ x,  R2 = 0.37
        (2.51)   (9.41)

−0.5

0.0

0.5

1.0

−0.5 0.0 0.5 1.0
US Alpha (%)

W
or

ld
 E

x.
 U

S
 A

lp
ha

 (
%

)

Figure 7: US Factor Alphas Versus World Ex. US

Note: The figure compares OLS alphas for US factors versus their international counterpart. Each world ex.
US factor is a capitalization-weighted average of the factor in all other countries of our sample. Blue points
correspond to factors that were significant in the original study in the literature, while red points are those
for which the original paper did not find a significant effect (or did not study the factor in terms of average
return significance). The dotted line is the 45o line. The figure also reports a regression of world ex. US
alpha on US alpha.

average alpha across all countries in our sample (“World” in the figure). Using data from

around the world, we find a Bayesian replication rate of 82.4%.

Why do international OLS replication rates differ from the US? This is due primarily to

the the fact that foreign markets have shorter time samples. Point estimates are similar in

magnitude for the US and international data. Figure 7 shows the alpha of each US factor

against the alpha of the corresponding factor for the world ex. US universe. The data cloud

aligns closely with the 45o line, demonstrating the close similarity of alpha magnitudes in

the two samples. But shorter international samples widen confidence intervals, and this is

the primary driver of the drop in OLS replication rates outside the US.
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Figure 8: In-Sample versus Out-of-Sample Alphas for US Factors

Note: The figure plots OLS alphas for US factors during the in-sample period (i.e., the period studied in the
original publication) versus out-of-sample alphas. In Panel A, out-of-sample is the time period before the
in-sample period. In Panel B, out-of-sample is the time period before the in-sample period. In Panel C, out-
of-sample includes both the time period before and after the in-sample period. We require at least five years
of out-of-sample data for a factor to be included, amounting to 102, 115 and 119 factors in panel A, B and C.
The figure also reports feasible GLS estimates of out-of-sample alphas on in-sample alphas. To implement
feasible GLS, we assume that the error variance-covariance matrix is proportional to the full-sample CAPM
residual variance-covariance matrix, Σ̂/T , described in section B. The dotted line is the 45o line.

Time Series Out-of-Sample Evidence

McLean and Pontiff (2016) document the intriguing fact that, following publication, factor

performance tends to decay. They estimate an average post-publication decline of 58% in

factor returns. In our data, the average in-sample alpha is 0.49% per month and the average

out-of-sample alpha is 0.26% when looking post-original sample, implying a decline of 47%.

We gain further economic insight by looking at these findings cross-sectionally. Figure

8 makes a cross-sectional comparison of the in-sample and out-of-sample alphas of our US

factors. The in-sample period is the sample studied in the original reference. The out-of-

sample period in Panel A is the time period before the start of in-sample period, while in

Panel B it is the period following the in-sample period. Panel C defines out-of-sample as the

combined data from the periods before and after the originally studied sample. We find that

82.6% of the US factors that were significant in the original publication also have positive

returns in the pre-original sample, 83.3% are positive in the post-original sample, and 87.4%

are positive in the combined out-of-sample period. When we regress out-of-sample alphas

on in-sample alphas using GLS, we find a slope coefficient of 0.57, 0.26, and 0.35 in Panels
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A, B, and C, respectively. The slopes are highly significant (ranging from t = 3.5 to t = 5.3)

indicating that in-sample alphas contain something “real” rather than being the outcome of

pure data mining, as factors that performed better in-sample also tend to perform better

out-of-sample.

The significantly positive slope allows us to reject the hypothesis of “pure alpha-hacking,”

which would imply a slope of zero, as seen in Proposition 1. Further, the regression intercept

is positive, while alpha-hacking of the form studied in Proposition 1 would imply a negative

intercept.

That the slope coefficient is positive and less than one is consistent with basic Bayesian

logic of equation (4). As we emphasize in Section 1, a Bayesian would expect at least some

attenuation in out-of-sample performance. This is because the published studies report the

OLS estimate, while Bayesian beliefs shrink the OLS estimate toward the zero-alpha prior.

More specifically, with no alpha hacking or arbitrage, the Bayesian expects a slope of ap-

proximately 0.9 using equation (5) and our EB hyperparameters (see appendix Table B.1).37

Hence, the slope coefficients in Figure 8 are too low relative to this Bayesian benchmark. In

addition to the moderate slope, there is evidence that the dots in Figure 8 have a concave

shape (as seen more clearly in appendix Figure D.2). These results indicate that, while

we can rule out pure alpha-hacking (or p-hacking), there is some evidence that the highest

in-sample alphas may either be data-mined or arbitraged down.

From the Bayesian perspective, another interesting evaluation of time series external

validity is to ask whether the new information contained in out-of-sample data moves the

posterior alpha toward zero or not. Imagine a Bayesian observing the arrival of factor

data in real time. As new data arrives, she updates her beliefs for all factors based on the

information in the full cross section of factor data. In the top panel of Figure 9, we show how

the Bayesian’s posterior of the average alpha would have evolved in real time.38 We focus

on all the World factors that are available since at least 1955 and significant in the original

37The slope is κ = 1/(1 + σ2/(Tτ2)) = 0.9, where σ2 = 10%2/12, the average in-sample period length is
T = 420 months, and τ2 = τ2c + τ2w = (0.35%)2 + (0.21%)2 = (0.41%)2.

38Here we keep τc and τw fixed at their full-sample values of 0.37% and 0.23% to mimic the idea of given
decision maker who starts with a given prior and updates this view based on new data, while keeping the
prior fixed. Figure D.3 shows that the figure is almost the same with rolling estimates of τc and τw, and
Figure D.4 shows that this consistency arises because the rolling estimates are relatively stable.
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Figure 9: World Factor Alpha Posterior Distribution Over Time

Note: The top panel reports the CAPM alpha and 95% posterior confidence interval for an equal-weighted
portfolio of World factors based on EB posteriors re-estimated in December each year. That is, each blue
dot is E( 1

N

∑
i α

i| data until time t) and the vertical lines are ±2 times the posterior volatility. Triangles
show average OLS alpha at each point in time, 1

N

∑
i α̂

i
ti0,t

, estimated using data through date t. The bottom

panel reports the average monthly alpha for all factors in a rolling 5-year window. The results are based on
factors found to be significant in the original paper with data available since 1955.

paper. Starting in 1960, we re-estimate the hierarchical model using the empirical Bayes

estimator in December of each year. The plot shows the CAPM alpha and corresponding

95% confidence interval of an equal-weighted portfolio of the available factors. The posterior

mean alpha becomes relatively stable from the mid 1980s, around 0.4% per month. And, as

data evidence has accumulated over time, the confidence interval narrows by a third, from

about 0.16% wide in 1960 to 0.10% in 2020.

To understand the posterior alpha, Figure 9 also shows the average OLS alpha as triangles

and the bottom panel in Figure 9 reports the rolling 5-year average monthly alpha among

all these factors. We see that the EB posterior is below the OLS estimate, which occurs

because the Bayesian posterior is shrunk toward the zero prior. Naturally, periods of good

performance increase the posterior mean as well as the OLS estimate, and vice versa for poor

performance. Over time, the OLS estimate moves nearer to the Bayesian posterior mean.
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To further understand why the posterior alpha is relatively stable with a tightening

confidence interval, consider the following simple example. Suppose a researcher has T = 10

years of data for factors with an OLS alpha estimate of α̂ = 10% with standard error σ/
√
T .

Further, assume their zero-alpha prior is equally as informative as their 10-year sample (i.e.,

τ = σ/
√
T ). Then the shrinkage factor is κ = 1/2 using equation (5). So, after observing the

first ten years with α̂ = 10%, the Bayesian expects a future alpha of E(α|α̂) = 5% (equation

(4)). What happens if this Bayesian belief is confirmed by additional data, namely that the

factor realizes an alpha of 5% over the next 10 years? In this case, the full-sample OLS

of alpha is α̂ = 7.5%, but now the shrinkage factor becomes κ = 2/3 because the sample

length doubles, T = 20. This results in a posterior alpha of E(α|α̂) = 7.5% · 2/3 = 5%.

Naturally, when beliefs are confirmed by additional data, the posterior mean does not change.

Nevertheless, we learn something from the additional data, because our conviction increases

as the posterior variance is reduced. If σ = 0.1, the posterior volatility
√
Var(α|α̂) = σ

√
κ
T

goes from 2.2% with 10 years of data to 1.8% with 20 years of data, and the confidence

interval, [E(α|α̂)± 2
√
Var(α|α̂)], is reduced from [0.5%, 9.5%] to [1.3%, 8.7%].

3.3 Bayesian Multiple Testing

A great advantage of Bayesian methods for tackling challenges in multiple testing is that,

from the posterior distribution, we can make explicit probability calculations for essentially

any inferential question. We simulate from our EB posterior to investigate the false discovery

and family-wise error rates among the set of global factors that were significant in the original

study. We define a false discovery as a factor where we claim that the alpha is positive, but

where the true alpha is negative.39

First, based on Proposition 5, we calculate the Bayesian FDR in our sample as the

average posterior probability of a false discovery, p-null, among all discoveries. We find

that FDRBayes = 0.1%, meaning that we expect roughly one discovery in 1000 to be a false

positive given our Bayesian hierarchical model estimates. The posterior standard error for

39In particular, we define a discovery as a factor for which the posterior probability of the true alpha
being negative is less than 2.5%. With this definition, we start with 153 world factors, then focus on the 119
factors that were significant in the original studies, and, out of these, 98 are considered discoveries.
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FDRBayes is 0.3% with a confidence interval of [0,1%]. In other words, the model generates a

highly conservative MT adjustment in the sense that once a factor is found to be significant,

we can be relatively confident that the effect is genuine.

We can also use the posterior to make other inference calculations. We compute the

FWER, which we define as the probability of at least one false discovery. We simulate

1,000,000 draws of the vector of alphas that were deemed to be discoveries from the EB

posterior and compute

FWERBayes =
1

1, 000, 000

1,000,000∑
s=1

1{ns≥1} = 5.5%

where ns is the number of false discoveries in simulation s. In other words, the probability of

at least one alpha having the wrong sign is 5.5%. The FWERBayes is naturally much higher

than the FDRBayes given the extreme conservatism built into the FWER’s definition of false

discovery. Whether it is too high is subjective. A nice aspect of our approach is that a

researcher can control the FWERBayes as desired. For example, using a t-statistic threshold

of 2.78 rather than 1.96 leads to FWERBayes = 0.8%.

From the posterior, we can also compute the expected fraction of discovered factors that

are “true,” which is in general different than the replication rate. The replication rate is

the fraction of factors having E(αi|data)/σ(αi|data) > 1.96, while the expected fraction of

true factors is 1
n

∑
iE(1αi>0|data) = 1

n

∑
i Pr(αi > 0|data). The replication rate gives a

conservative take on the number of true factors—the expected fraction of true factors is

typically higher than the replication rate. To understand this conservatism, consider an

example in which all factors have a 90% posterior probability of being true. These would all

individually be counted as “not replicated,” but they would contribute to a high expected

fraction of true factors. Indeed, we estimate that the expected fraction of factors with truly

positive alphas is 94% (with a posterior standard error of 1.3%), notably higher than our

estimated replication rate.
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Economic Benefits of More Powerful Tests

MT adjustments should ultimately be evaluated by whether they lead to better decisions.

It is important to balance the relative costs of false positives versus false negatives, and

the appropriate tradeoff depends on the context of the problem (Greenland and Hofman,

2019). We apply this general principle in our context by directly measuring costs in terms

of investment performance.

Specifically, we can compute the difference in out-of-sample investment performance from

investing using factors chosen with different methods. We compare two alternatives. One is

the BY decision rule advocated by Harvey et al. (2016), which is a frequentist MT method

that successfully controls false discoveries relative to OLS, but in doing so sacrifices power

(the ability to detect true positives). The second alternative is our EB method, whose false

discovery control typically lies somewhere between BY and unadjusted OLS. EB uses the

data sample itself to decide whether its discoveries should behave more similarly to BY or

to unadjusted OLS.

For investors, the optimal decision rule is the one that leads to the best performance

out-of-sample. For the most part, the set of discovered factors for BY and EB coincide. It

is only in marginal cases where they disagree which, in our sample, occurs when EB makes

a discovery that BY deems insignificant. Therefore, to evaluate MT approaches in economic

terms, we track the out-of-sample performance of factors included by EB but excluded by

BY. If the performance of these is negative on average, then the BY correction is warranted

and preferred by the investor.

We find that the out-of-sample performance of factors discovered by EB but not BY is

positive on average and highly significant. The alpha for these marginal cases is 0.35% per

month among US factors (t = 5.1).40 This estimate suggests that the BY decision rule is

too conservative. An investor using the rule would fail to invest in factors that subsequently

have a high out-of-sample return.

Another way to see that the BY decision rule is too conservative comes from the connec-

40For the developed ex. US sample, the monthly alpha for marginal cases is 0.24% per month (t = 5.3),
and for the emerging sample it is 0.27% (t = 3.7), in favor of the EB decision rule. Appendix Table E.1
reports additional details for this analysis.
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tion between Sharpe ratio and t-statistics: t = SR
√
T . If we have a factor with an annual

Sharpe ratio of 0.5, an investor using the 1.96 cutoff would in expectation invest in the factor

after 15 years. An investor using the 2.78 cutoff, would not start investing until observing

the factor for 31 years.

Addressing Unobserved Factors, Publication Bias, and other Biases

A potential concern with our replication rate is that the set of factors that make it into

the literature is a selected sample. In particular, researchers may have tried many different

factors, some of which are observed in the literature, while others are unobserved because

they never got published. Unobserved factors may have worse average performance if poor

performance makes publication more difficult or less desirable. Alternatively, unobserved

factors could have strong performance if people chose to trade on them in secret rather than

publishing them. Either way, we next show how unobserved factors can be addressed in our

framework.

The key insight is that the performance of factors across the universe of observed and

unobserved factors is captured in our prior parameters τc, τw. Indeed, large values of these

priors correspond to a large dispersion of alphas (that is, a lot of large alphas “out there”)

while small values means that most true alphas are close to zero. Therefore, smaller τ ’s

lead to a stronger shrinkage toward zero for our posterior alphas, leading to fewer factor

“discoveries” and a lower replication rate. Figure 10 shows how our estimated replication

rate depends on the most important prior parameter, τc, based on the τw that we estimated

from the data.41

In Figure 10, we show how the replication rate varies with τc in precise quantitative

terms. Note that while the replication rate indeed rises with τc, the differences are small

in magnitude across a large range of τc values, demonstrating robustness of our conclusions

about replicability.

This stable replication rate in Figure 10 also suggests that the replication rate among

the observed factors would be similar even if we had observed the unobserved factors. The

figure highlights several key values of τc: Both the value of τc that we estimated from the

41Figure F.1 in the appendix shows that the results are robust to alternative values of τw.
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Figure 10: Replication Rate with Prior Estimated in Light of Unobserved Factors

Note: The figure shows how the replication rate in the US varies when changing the τc parameter. The
τw parameter is fixed at the estimate value of 0.21%. The dotted line shows our replication rate of 82.4%.
The green square, highlights the value estimated in the data τc = 0.35%. The red triangle and the blue
circle highlights values that are found by estimating the empirical Bayes model according to assumptions
about unobserved factors from Harvey et al. (2016). The values are τc = 0.28% in the baseline scenario and
τc = 0.20% in the conservative scenario. A description of this approach can be found in Appendix F.

observed data (as explained in Appendix B) and values that adjust for unobserved data in

different ways.

We adjust τc for unobserved factors as follows. We simulate a data set that proxies for

the full set of factors in the population (including those unobserved), and then estimate the

τ ’s that match this sample. One set of simulations is constructed to match the baseline

scenario of Harvey et al. (2016) (Table 5.A, row 1), which estimates that researchers have

tried M = 1, 297 factors, of which 39.6% of have zero alpha and the rest have a Sharpe

ratio of 0.44. We also consider the more conservative scenario of Harvey et al. (2016) (Table

5.B, row 1), which implies that researchers have tried M = 2, 458 factors, of which 68.3%

have zero alpha. Appendix F has more details on these simulations. The result, as seen in

Figure 10, is that values of τc that correspond to these scenarios from Harvey et al. (2016)

still lead to a conclusion of a high replication rate in our factor universe. The replication rate
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Figure 11: World Alpha Posterior By Factor and Cluster

Note: The figure reports the EB posterior 95% confidence interval for the true alpha of a world factor create
as a capitalization weighted average of all country specific factors in our dataset. We only include factors
that the original paper finds significant.

is 81.5%, and 79.8% for the prior hyperparameters implied by the baseline and conservative

scenario respectively.

A closely related bias is that factors may suffer from alpha-hacking as discussed in Sec-

tion 1.1 (Proposition 1), which makes realized in-sample factor returns too high. To account

for this bias, we estimate the prior hyper-parameters using only out-of-sample data. These

estimated values are τc = 0.27% and τw = 0.22%. These hyper-parameters are similar to

those implied by the baseline scenario of Harvey et al. (2016) as seen in Figure 10. With

these hyper-parameters, the replication rate is 81.5%.

3.4 Economic Significance of Factors

Which factors (and which themes) are the most impactful anomalies in economic terms?

We investigate this question by identifying which factors matter most from an investment

performance standpoint.

Figure 11 shows the alpha confidence intervals for all world factors, sorted by the median
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posterior alpha within clusters. This illustration is similar to Figure 4, but now we focus

on the world instead of the US factors, and here we sort factors into clusters. We also

focus on factors that the original studies conclude are significant. We see that world factor

alphas tend to be economically large, often above 0.3% per month, and tend to be highly

significant, in most clusters. The exception is the low leverage cluster, where we also saw a

low replication rate in preceding analyses.

By Region and By Size

We next consider which factors are most economically important across global regions and

across stock size groups. In Panel A of Figure 12, we construct factors using only stocks in

the five size subsamples presented earlier in Figure 5; namely mega, large, small, micro, and

nano stock samples. For each sample, we calculate cluster-level alphas as the equal-weighted

average alpha of rank-weighted factors within the cluster.42 We see, perhaps surprisingly,

that the ordering and magnitude of alphas is broadly similar across size groups. The Spear-

man rank correlation of alphas for mega caps versus micro caps is 73%. Only the nano

stock sample, defined as stocks below the 1st percentile of the NYSE size distribution (which

amounted to 458 out of 4356 stocks in the US at the end of 2020), exhibits notable deviation

from the other groups. The Spearman rank correlation between alphas of mega caps and

nano caps is 36%.

Panel B of Figure 12 shows cluster-level alphas across regions. Again, we find consistency

in alphas across the globe, with the obvious standout being the size theme, which is much

more important in emerging markets than in developed markets. US factor alphas share a

62% Spearman correlation with the developed ex. US sample, and a 43% correlation with

the emerging markets sample.

Controlling for Other Themes

We have focused so far on whether factors (or clusters) possess significant positive alpha

relative to the market. The limitation of studying factors in terms of CAPM alpha is that it

42Rank-weighting is similar to equal-weighting and used here to illustrate the performance of typical stocks
in each size group. See equation (1) in Asness et al. (2013).
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Figure 12: Alphas By Geographic Region and Stock Size Group

Note: The figure reports average cluster-level alphas for factors formed from subsamples defined by different
stock market capitalization groups (Panel A) and regions (Panel B).
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Figure 13: Tangency Portfolio Weights

Note: The return are from the US portfolios. We compute the cluster return as the equal weighted return of
all factors with data available at a given point in time. We further add the US market return. We estimate
the tangency weights following the method of Britten-Jones (1999) with a non-negativity constraint. The
error bars are the 90% confidence intervals based on 10,000 bootstrap samples and the percentile method.
The data starts in 1952 to ensure that all cluster have non-missing observations.

does not control for duplicate behavior other than through the market factor. Economically

important factors are those that have large impact on an investor’s overall portfolio, and

this requires understanding which clusters contribute alpha while controlling for all others.

To this end, we estimate cluster weights in a tangency portfolio that invests jointly in all

cluster-level portfolios. We test the significance of the estimated weights using the method of

Britten-Jones (1999). In addition to our 13 cluster-level factors, we also include the market

portfolio as a way of benchmarking factors to the CAPM null. Lastly, we constrain all

weights to be non-negative (because we have signed the factors to have positive expected

returns according to the findings of the original studies).

Figure 13 reports the estimated tangency portfolio weights and their 90% bootstrap

confidence intervals. When a factor has a significant weight in the tangency portfolio, it

means that it matters for an investor, even controlling for all the other factors. We see

that all but three clusters are significant in this sense. We also see that conclusions about
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Figure 14: The Evolution of the Tangency Sharpe ratio
Note: The top panel shows the Sharpe ratio on the ex-post tangency portfolio. A factor is included in the
tangency portfolio only after the end of the sample in which the factor was studied in the original publication
(and we only include factors that were found to be significant in the original paper). We highlight selected
factors that significantly improve the optimal portfolio, starting with the market portfolio. We use the
longest available balanced US sample, 1972–2020 (that is, when all factors are available).

cluster importance change when clusters are studied jointly. For example, value factors

become stronger when controlling for other effects because of their hedging benefits relative

to momentum, quality, and low leverage. More surprisingly, the low leverage cluster becomes

one of the most heavily weighted clusters, in large part due to its ability to hedge value and

low risk factors. The hedging performance of value and low leverage clusters is clearly

discernible in Appendix table I.2, which shows the average pairwise correlations among

factors within and across clusters.43 Appendix H provides further performance attribution

of the tangency portfolio at the factor level.44

Evolution of Finance Factor Research

The number of published factors has increased over time as seen in the bottom panel of

Figure 14. But, to what extent have these new factors continued to add new insights versus

repackaging existing information?

43Appendix Tables H.1 and H.2 show how tangency portfolio weights vary by region and by size group.
44Figure H.3 shows the performance of each cluster in combination with the market portfolio, figure H.4

shows how the optimal portfolio changes when one cluster is excluded and figure H.6 shows the importance
of each factor for the optimal portfolio.
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To address this question, we consider how the optimal risk-return tradeoff has evolved

over time as factors have been discovered. Specifically, Figure 14 computes the monthly

Sharpe ratio of the ex-post tangency portfolio that only invests in factors discovered by a

certain point in time.45 The starting point (on the left) of the analysis is the 0.13 Sharpe

ratio of the market portfolio in the US sample 1972-2020 when all factors are available.

The ending point (on the right) is the 0.80 Sharpe ratio of the tangency portfolio that

invests the optimal weights across all factors over the same US sample period.46 In between,

we see how the Sharpe ratio of the tangency portfolio has evolved as factors have been

discovered. The improvement is gradual over time, but we also see occasional large increases

when researchers have discovered especially impactful factors (usually corresponding to new

themes in our classification scheme). An example is the operating accruals factor proposed

by Sloan (1996), which increased the tangency Sharpe ratio from 0.43 to 0.56. More recently,

the seasonality factors of Heston and Sadka (2008) increase the Sharpe ratio from 0.65 to

0.74.

4 Conclusion: Finance Research Posterior

We introduce a hierarchical Bayesian model of alphas that emphasizes the joint behavior of

factors and provides a more powerful multiple testing adjustment than common frequentist

methods. Based on this framework, we re-visit the evidence on replicability in factor research

and come to substantially different conclusions versus the prior literature. We find that US

equity factors have a high degree of internal validity in the sense that over 80% of factors

remain significant after modifications in factor construction that make all factors consistent,

more implementable, while still capturing the original signal (Hamermesh, 2007) and after

accounting for multiple testing concerns (Harvey et al., 2016; Harvey, 2017).

We also provide new evidence demonstrating a high degree of external validity in factor

research. In particular, we find highly similar qualitative and quantitative behavior in a

45We estimate tangency portfolio weights following the method of Pedersen et al. (2021), which offers a
sensible approach to mean-variance optimization for high dimensional data. Estimation details are provided
in Appendix H.

46The high Sharpe ratio partly reflects the fact that we are doing an in-sample optimization. If we instead
do a pseudo out-of-sample analysis via cross-validation, we find a monthly Sharpe ratio of 0.56.
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large sample of 153 factors across 93 countries as we find in the US. We also show that,

within the US, factors exhibit a high degree of consistency between their published in-

sample results and out-of-sample data not considered in the original studies. We show that

some out-of-sample factor decay is to be expected in light of Bayesian posteriors based

on publication evidence. Therefore, the new evidence from post-publication data largely

confirms the Bayesian’s beliefs, which has led to relatively stable Bayesian alpha estimates

over time.

In addition to providing a powerful tool for replication, our Bayesian framework has

several additional applications. For example, the model can be used to correctly interpret

out-of-sample evidence, look for evidence of alpha-hacking, compute the expected number of

false discoveries and other relevant statistics based on the posterior, analyze portfolio choice

taking into account both estimation uncertainty and return volatility, and evaluate asset

pricing models.

Finally, the code, data, and meticulous documentation for our analysis are available on-

line. Our large global factor data set and the underlying stock-level characteristics are easily

accessible to researchers by using our publicly available code and its direct link to WRDS.

Our database will be updated regularly with new data releases and code improvements. We

hope that our methodology and data will help promote credible finance research.
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A Appendix: Additional Results and Proofs

Additional Results on Alpha Hacking

We consider the situation where the researcher has in-sample data from time 1 to time T and
an out-of-sample (oos) period from time T + 1 to T + T oos. The researcher may have used
alpha-hacking during the in-sample period, but this does not affect the out-of-sample period.
The researcher is interested in the posterior alpha based on the total evidence, in-sample
and out-of-sample, which is useful for predicting factor performance in a future time period
(that is, a time period that is out-of-sample relative to the existing out-of-sample period).

Proposition 6 (Out-of-sample alpha) The posterior alpha based on an in-sample data
from time 1 to T with alpha-hacking, and an out-of-sample period from T + 1 to T + T oos is
given by

E(α|α̂, α̂oos) = κoos (w(α̂− ε̄) + (1− w)αoos) (A.1)

where w = σ2/T oos

σ̄2/T+σ2/T oos ∈ (0, 1) is the relative weight on the in-sample period relative to the

out-of-sample period, and κoos = 1
1+1/(τ2([σ̄2/T ]−1+[σ2/T oos]−1))

is a shrinkage parameter.

We see that, the more alpha hacking the researcher has done (higher σ̄), the less weight
we put on the in-sample period relative to the out-of-sample period. Further, the in-sample
period has the non-proportional discounting due to alpha hacking (ε̄), which we don’t have
for out-of-sample evidence.

So this result formalizes the idea that an in-sample backtest plus live performance is
not the same as a longer backtest. For example, 10 years of backtest plus 10 years of live
performance is more meaningful that 20 years of backtest with no live performance. The
difference is that the oos-performance is free from alpha-hacking.

Proofs and Lemmas

The proofs make repeated use of the following well-known property of multivariate Normally
distributed random variable. If x and y are multivariate Normal:[

x
y

]
∼ N

([
µx

µy

]
,

[
Σxx Σyx

Σxy Σyy

])
(A.2)

then the conditional distribution of x given y has the following Normal distribution:

x|y ∼ N
(
µx + ΣxyΣ

−1
yy (y − µy) , Σxx − ΣxyΣ

−1
yy Σyx

)
(A.3)

The proofs also make use of the following two lemmas.

Lemma 1 For random variables x, y, z, it holds that E(Var(x|y, z)) ≤ E(Var(x|y)) and, if
the random variables are jointly normal, then Var(x|y, z) ≤ Var(x|y).
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Lemma 2 Let A be an N × N matrix for which all diagonal elements equal a and all off-
diagonal elements equal b, where a ̸= b and a + b(N − 1) ̸= 0. Then the inverse A−1 exists
and is of the same form:

A =

a b
. . .

b a

 A−1 =

c d
. . .

d c

 (A.4)

where c = a+b(N−2)
(a−b)(a+b(N−1))

and d = −b
(a−b)(a+b(N−1))

.

Proof of Lemma 1. Using the definition of conditional variance, we have

E(Var(x|y, z)) = E(E(x2|y, z))− E([E(x|y, z)]2) = E(x2)− E([E(x|y, z)]2)

Hence, using Jensen’s inequality, we have

E(Var(x|y))− E(Var(x|y, z)) =E([E(x|y, z)]2)− E([E(x|y)]2)
=E([E(x|y, z)]2)− E([E(E(x|y, z)|y)]2)
≥E([E(x|y, z)]2)− E(E([E(x|y, z)]2 |y)) = 0

The result for normal distributions follows from the fact that normal conditional variances
are non-stochastic, i.e., Var(x|y) = E(Var(x|y)). In this case, we can also characterize the
extra drop in variance due to conditioning on z using its orthogonal component ε from the
regression z = a+ by + ε, using similar notation as (A.2):

Var(x|y, z) = Var(x|y, ε) =Σx,x − Σx,(y,ε)Σ
−1
(y,ε),(y,ε)Σ(y,ε),x

=Σx,x − Σx,yΣ
−1
y,yΣy,x − Σx,εΣ

−1
ε,εΣε,x = Var(x|y)− Σx,εΣ

−1
ε,εΣε,x

Proof of Lemma 2. The proof follows from inspection: The product of A and its proposed
inverse clearly has the same form as A with diagonal elements

ac+ bd(I − 1) =
a(a+ b(N − 2))− b2(N − 1)

(a− b)(a+ b(N − 1))
=

a2 + ab(N − 1)− ab− b2(N − 1)

(a− b)(a+ b(N − 1))
= 1

and off-diagonal elements

ad+ bc+ bd(N − 2) =
−ab+ b(a+ b(N − 2))− b2(N − 2)

(a− b)2(a+ b(N − 1))2
= 0

In other words, AA−1 equals the identity, proving the result.

Proof of Equations (4)–(6). The posterior distribution of the true alpha given the observed
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factor return is computed using (A.3). The conditional mean is

E(α|α̂) = 0 +
Cov(α, α̂)

Var(α̂)
(α̂− 0) =

τ 2

τ 2 + σ2/T
α̂ = κα̂

where κ is given by (5) and the posterior variance is

Var(α|α̂) = Var(α)− (Cov(α, α̂))2

Var(α̂)
= τ 2 − τ 2

τ 2

τ 2 + σ2/T
=

τ 2σ2/T

τ 2 + σ2/T
= κ

σ2

T

Proof of Proposition 1. The posterior alpha with alpha-hacking is given via (A.3) as

E(α|α̂) = 0 +
Cov(α, α̂)

Var(α̂)
(α̂− E(α̂)) =

τ 2

τ 2 + σ̄2/T
(α̂− ε̄) = −κ0 + κhackingα̂

where κhacking = 1

1+ σ̄2

τ2T

, κ0 = κhackingε̄ ≥ 0, and κhacking ≤ κ because σ̄ ≥ σ.

Proof of Proposition 2. The posterior mean given α̂ and α̂g is computed via (A.3) as

E(α|α̂, α̂g) =
[
τ 2 τ 2

] [ τ 2 + σ2
T τ 2 + ρσ2

T

τ 2 + ρσ2
T τ 2 + σ2

T

]−1 [
α̂
α̂g

]
=

1

det

[
τ 2 τ 2

] [ τ 2 + σ2
T −(τ 2 + ρσ2

T )
−(τ 2 + ρσ2

T ) τ 2 + σ2
T

] [
α̂
α̂g

]
=

τ 2(1− ρ)σ2
T

det
(α̂ + α̂g)

=
τ 2(1− ρ)

σ2
T (1− ρ)(1 + ρ) + 2τ 2(1− ρ)

(α̂ + α̂g)

= κg

(
1

2
α̂ +

1

2
α̂g

)
using the notation σ2

T = σ2/T and

det = (τ 2 + σ2
T )

2 − (τ 2 + ρσ2
T )

2 = σ2
T [σ

2
T (1− ρ2) + 2τ 2(1− ρ)].

The global shrinkage parameter κg is in [κ, 1] and decreases with the correlation ρ, attaining
the minimum value, κg = κ, when ρ = 1 as is clearly seen from (12).

The result about the posterior variance follows from Lemma 1.

Proof of Proposition 3. The prior joint distribution of the true and estimated alphas is

57

Electronic copy available at: https://ssrn.com/abstract=3774514



given by the following expression, where we focus on factor 1 without loss of generality:


α1

α̂1

...
α̂N

 ∼ N



0
0
...
0

 ,


τ 2c + τ 2w τ 2c + τ 2w τ 2c · · · τ 2c
τ 2c + τ 2w τ 2c + τ 2w + σ2/T τ 2c + ρσ2/T

τ 2c
...

. . .

τ 2c τ 2c + ρσ2/T τ 2c + τ 2w + σ2/T



 (A.5)

The posterior alpha of factor 1 is therefore normally distributed with a mean derived using
the standard formula for conditional normal distributions (A.3):

E(α1|α̂1, . . . , α̂N) =


τ 2c + τ 2w

τ 2c
...
τ 2c


⊤ τ

2
c + τ 2w + σ2/T τ 2c + ρσ2/T

. . .

τ 2c + ρσ2/T τ 2c + τ 2w + σ2/T


−1  α̂

1

...
α̂N


We next use Lemma 2 and its notation, i.e., a = τ 2c + τ 2w + σ2/T , b = τ 2c + ρσ2/T , and
c′, d are defined accordingly, where we use the notation c′ to avoid confusion with the c in
equation (14). This application of Lemma 2 yields

E(α1|α̂1, . . . , α̂N) =


τ 2c + τ 2w

τ 2c
...
τ 2c


⊤ c

′ d
. . .

d c′


 α̂

1

...
α̂N



=


τ 2c (c

′ + d(N − 1)) + τ 2wc
′

τ 2c (c
′ + d(N − 1)) + τ 2wd

...
τ 2c (c

′ + d(N − 1)) + τ 2wd


⊤  α̂

1

...
α̂N


=(τ 2c (c

′ + d(N − 1)) + τ 2wd)Nα̂· + τ 2w(c
′ − d)α̂1

=(τ 2c
N

a+ b(N − 1)
− τ 2w

bN

(a− b)(a+ b(N − 1))
)α̂· + τ 2w

1

a− b
α̂1

=
τ 2c

b+ a−b
N

α̂· +
τ 2w

a− b

(
α̂1 − 1

1 + a−b
bN

α̂·

)

=
τ 2c

τ 2c + ρσ2/T + τ2w+(1−ρ)σ2/T
N

α̂· +
τ 2w

τ 2w + (1− ρ)σ2/T

(
α̂1 − 1

1 + τ2w+(1−ρ)σ2/T
(τ2c+ρσ2/T )N

α̂·

)

=
1

1 + ρσ2

τ2c T
+ τ2w+(1−ρ)σ2/T

τ2cN

α̂· +
1

1 + (1−ρ)σ2

τ2wT

(
α̂1 − 1

1 + τ2w+(1−ρ)σ2/T
(τ2c+ρσ2/T )N

α̂·

)
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The posterior has conditional variance

Var(α1|α̂1, . . . , α̂N) =τ 2c + τ 2w −


τ 2c + τ 2w

τ 2c
...
τ 2c


⊤ c

′ d
. . .

d c′



τ 2c + τ 2w

τ 2c
...
τ 2c



=τ 2c + τ 2w −


τ 2c (c

′ + d(N − 1)) + τ 2wc
′

τ 2c (c
′ + d(N − 1)) + τ 2wd

...
τ 2c (c

′ + d(N − 1)) + τ 2wd


⊤ 

τ 2c + τ 2w
τ 2c
...
τ 2c


=τ 2c + τ 2w − (τ 2c (c

′ + d(N − 1)) + τ 2wc
′)(τ 2c + τ 2w)

− (τ 2c (c
′ + d(N − 1)) + τ 2wd)τ

2
c (N − 1)

→τ 2c + τ 2w − (τ 2c (
1

a− b
− 1

a− b
) + τ 2w

1

a− b
)(τ 2c + τ 2w)

− (τ 2c
1

b
− τ 2w

1

a− b
)τ 2c

=τ 2c + τ 2w −
(
τ 4w

1

a− b
+ τ 4c

1

b

)
=τ 2c + τ 2w −

(
τ 4w

τ 2w + (1− ρ)σ2/T
+

τ 4c
τ 2c + ρσ2/T

)
The last results follow from Lemma 1.

Proof of Proposition 4. We write the joint prior distribution of true and observed alphas
in the multi-level hierarchical model as(

α
α̂

)
∼ N

(
α0 12NK ,

(
Ω Ω
Ω Ω + Σ/T

))
(A.6)

The posterior mean vector of true alphas is computed via (A.3):

E(α|α̂) = 1NKα0 + Ω(Ω + Σ/T )−1 (α̂− 1NKα0)

=
(
Ω−1 + TΣ−1

)−1 (
Ω−11NKα0 + TΣ−1α̂

)
using that (Ω + Σ/T )−1 = Ω−1−Ω−1 (Ω−1 + TΣ−1)

−1
Ω−1 by the Woodbury matrix identity.

The posterior variance is computed similarly via (A.3) and the same application of the
Woodbury matrix identity as

Var(α|α̂) = Ω− Ω (Ω + Σ/T )−1Ω =
(
Ω−1 + TΣ−1

)−1
.
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Proof of Proposition 5. Based on the definition of the Bayesian FDR, we have:

FDRBayes = E

(∑
i 1{i false discovery}∑

i 1{i discovery}

∣∣∣∣α̂1, . . . , α̂N , τ

)
=

1∑
i 1{i discovery}

E

(∑
i

1{i false discovery}

∣∣∣∣α̂1, . . . , α̂N , τ

)
(A.7)

=
1∑

i 1{i discovery}

∑
i

Pr(i false discovery|α̂1, . . . , α̂N , τ)

=
1

#discoveries

∑
i discovery

p-nulli

≤ 2.5%

Proof of Proposition 6. The posterior mean alpha is

E(α|α̂, α̂oos) =
[
τ 2 τ 2

] [τ 2 + σ̄2
T τ 2

τ 2 τ 2 + σ2
oos

]−1 [
α̂− ε̄
α̂oos

]
=

1

det

[
τ 2 τ 2

] [τ 2 + σ2
oos −τ 2

−τ 2 τ 2 + σ̄2
T

] [
α̂− ε̄
α̂oos

]
=

τ 2

det

(
σ2
oos(α̂− ε̄) + σ̄2

T α̂
g
)

=
τ 2(σ̄2

T + σ2
oos)

τ 2(σ̄2
T + σ2

oos) + σ̄2
Tσ

2
oos

(w(α̂− ε̄) + (1− w)αoos)

=
τ 2

τ 2 + σ̄2
Tσ

2
oos/(σ̄

2
T + σ2

oos)
(w(α̂− ε̄) + (1− w)αoos)

=
1

1 + 1
τ2(σ̄−2

T +σ−2
oos)

(w(α̂− ε̄) + (1− w)αoos)

using the notation σ̄2
T = σ̄2/T , σ2

oos = σ2/T oos, and

det = (τ 2 + σ̄2
T )(τ

2 + σ2
oos)− τ 4 = τ 2(σ̄2

T + σ2
oos) + σ̄2

Tσ
2
oos.

B Empirical Bayes Estimation

For convenient reference, we restate the multi-level hierarchical model of Section 1. For a
factor i in cluster j and corresponding to signal n, the factor is

f i
t = αi + βirmt + εit

60

Electronic copy available at: https://ssrn.com/abstract=3774514



with

αi = αo + cj + sn + wi

where the alpha components are αo = 0, cj ∼ N(0, τ 2c ), s
n ∼ N(0, τ 2s ), and wi ∼ N(0, τ 2w).

We write alpha in vector form as

α = αo 1NK +Mc+ Zs+ w (B.1)

where α = (α1, . . . , αNK)′, c = (c1, . . . , cJ)′, s = (s1, . . . , sN)′, w = (w1, . . . , wNK)′, M is
the NK × J matrix of cluster memberships, and Z is the NK × N matrix indicating the
characteristic that factor i is based on. Given the hyperparameters (α0, τc, τs, τw), the prior
mean and covariance matrix of alphas are

E[α] = 0, Ω ≡ Var(α) = MM ′τ 2c + ZZ ′τ 2s + INKτ
2
w. (B.2)

The vector of return shocks is εt = (ε1t , . . . , ε
NK
t )′ which is distributed εt ∼ N(0,Σ).

Given this structure, we estimate the model as follows. The vector of factor returns
ft = (f 1

t , ..., f
NK
t )′ has marginal likelihood—that is, after integrating out the uncertain alpha

components—that is distributed as

ft ∼ N(0, [Ω + Σ])

or, equivalently (treating CAPM betas as known), the estimated alphas are distributed47

α̂ ∼ N(0, [Ω + Σ/T ]).

The matrices Z and M are given by the factor definition and cluster assignment (Table
J.2), respectively. We use a plug-in estimate of the factor CAPM-residual return covariance
matrix, denoted Σ̂ (discussed below). Finally, given Σ̂, Z, and M , we estimate the hyperpa-
rameters of the prior distribution, (τc, τs, τw) via MLE based on the marginal likelihood.

This estimation approach is an example of the empirical Bayes method. It approximates
the fully Bayesian posterior calculation (which requires integrating over a hyperprior distri-
bution of hyperparameters, usually an onerous calculation) by setting the hyperparameters
to their most likely values based on the marginal likelihood. It is particularly well suited
to hierarchical Bayesian models in which parameters for individual observations share some
common structure, so that the realized heterogeneity across individual is informative about
sensible values for the hyperparameters of the prior. Our model and estimation approach
implementation is a minor variation on Bayesian hierarchical normal mean models that are
common in Bayesian statistics (textbook treatments include Efron, 2012; Gelman et al.,
2013; Maritz, 2018). We conduct sensitivity analysis to ensure that our results are robust to
a wide range of hyperparameters (see Figure F.1). Also, we note that our EB methodology
is more easily replicable than a full-Bayesian setting with additional hyperpriors as EB relies
on a closed-form Bayesian updating rather than a numerical integration.

47We abstract from uncertainty in CAPM betas to emphasize the Bayesian updating of alphas. Our
conclusions are qualitatively insensitive to accounting for beta uncertainty.
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To ensure cross-sectional stationarity, we scale each factor such that their monthly id-
iosyncratic volatility is 10%/

√
12 (i.e., 10% annualized). To construct a plug-in estimate of

the factor residual return covariance matrix, denoted Σ̂, we face two main empirical chal-
lenges. First, the sample covariance is poorly behaved due the relatively large number of
factors compared to the number of time series observations. Second, we have an unbalanced
panel because different factors come online at different points in time. To address the first
challenge, we impose a block equicorrelation structure on Σ based on factors’ cluster mem-
bership.48 The correlation between factors in clusters i and j is estimated as the average
correlation among all pairs such that one factor is in cluster i and the other is in j. In our
global analyses, blocks correspond to region-cluster pairs. To address unbalancedness, we
use the bootstrap. In particular, we generate 10,000 bootstrap samples that resample rows of
the unbalanced factor return dataset. Each bootstrap sample is, therefore, also unbalanced,
and we use this to produce a distribution of alpha estimates. From this we calculate Σ̂/T
as the covariance of alphas across bootstrap samples (imposing the block equicorrelation
structure).

Table B.1 shows the estimated hyperparameters across different samples. While most
of our analysis of based on these full-sample estimates, we also consider rolling-estimates of
when considering out-of-sample evidence as seen in Figure D.4.

Sample τc τw τs
USA 0.35% 0.21%
Developed 0.24% 0.18%
Emerging 0.32% 0.24%
USA, Developed & Emerging 0.30% 0.19% 0.10%
World 0.37% 0.23%
World ex. US 0.29% 0.20%
USA - Mega 0.26% 0.16%
USA - Large 0.31% 0.18%
USA - Small 0.44% 0.26%
USA - Micro 0.48% 0.32%
USA - Nano 0.42% 0.28%

Table B.1: Hyperparameters of the prior distribution estimated by maximum likelihood.
Here, τc is the estimated dispersion in cluster alphas (e.g., the dispersion in the alpha of the
value cluster alpha, momentum cluster, and so on). When we estimate a single region, τw is
the idiosyncratic dispersion of alphas within each cluster. When we jointly estimate several
regions, then τs is the estimated dispersion in alphas across signals within each cluster, and
τw is the estimated idiosyncratic dispersion in alphas for factors identified by their signal
and region.

48As advocated by Engle and Kelly (2012) and Elton et al. (2006), block equicorrelation constrains all pairs
of factors in the same block to share a single correlation parameter, and likewise for cross-block correlations.
This stabilizes covariance matrix estimates by dramatically reducing the parameterization of the correlation
matrix, while leaving the individual variance estimates unchanged.
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Internet Appendix

C Differences in Sample and Factor Construction

Here we provide further details on the difference in sample and factor construction vs. Hou
et al. (2020) accounting for the difference between the first two bars in Figure 1 in our
introduction. To re-iterate, with raw returns and capped value weights, we find a replication
rate of 55.6% where as Hou et al. (2020) finds a replication rate of 35%.

This difference has the following decomposition.49 First, Hou et al. (2020) focus their
analysis on value-weighted factors rather than the standard Fama and French (1993) method-
ology that gives half the weight to small stocks (or equal-weighting that gives even more
weight to small stocks). However, pure value weighting sometimes leads to excessively con-
centrated portfolios that mask the behavior of factors.50 We use a weighting scheme that
we refer to as “capped value-weighting” that winsorizes market caps at the NYSE 80th

percentile. This weighting is a helpful compromise between pure value-weighting and the
Fama-French method since our factors continue to emphasize large stocks, but the capped
scheme avoids undue skewness toward a few mega stocks, which in turn produces more ro-
bust factor behavior over time and across countries. Capped value weights contribute +9.2%
to our higher replication rate. Figure C.1 reproduces Figure 1 with straight value weights.

Second, for each characteristic, Hou et al. (2020) construct three variations on each factor
having either 1-month, 6-month, or 12-month holding periods. They treat these as separate
factors so that their factor count essentially multiplies their characteristics count by a factor
of three. In contrast, we focus on 1-month returns because this is the horizon of interest in
almost all of the original studies (and we believe it is the most economically meaningful since
it uses the most current data as theory dictates). Our focus on only the 1-month holding
period factor for each characteristic contributes +5.0% to our replication rate.

Third, we use a longer sample, which contributes +8.3% to the difference in replication
rate. Fourth, we add 15 factors to our sample that were previously studied in the literature
but not studied by Hou et al. (2020), which has a no effect on the replication rate.

Finally, we use tercile spreads and breakpoints based on all stocks above the NYSE 20th

percentile (i.e., non-micro-caps), while Hou et al. (2020) use decile spreads and breakpoints
based on all NYSE stocks. Our more conservative method leads to a −6.0% drop in the
replication rate. The remaining +4.1% difference in replication rates is due to minor con-
struction and sample details51. We discuss this decomposition further in Section 2, where
we detail our factor construction choices and discuss why we prefer them.

49Note that the attribution to specific changes depends on the order in which the changes are applied.
50For example, Nokia stock accounted for more than 70% of the total market capitalization in Finland in

1999 and 2000.
51For example we always lag accounting data four months, they use a mixture of updating schemes and

our set of factors is not identical to that in Hou et al. (2020).
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Replication Rate with Uncapped Value Weights

In Figure C.1, we show an alternative version of Figure 1 with factors constructed using
straight (as opposed to capped) value weights. It shows that all of main our conclusions
remain similar. Our ultimate replication rate in this case is 79.8% (based on global data and
Bayesian model estimates).
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Figure C.1: Replication Rates Versus the Literature (Uncapped Value-weighting)

Note: This figure reproduces the analysis of figure 1 using uncapped value weights to construct factors.
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D Additional Time-Series Results
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Figure D.1: Out-of-sample performance of significant factors under empirical Bayes

Note: The figure shows the cumulative CAPM alpha of an average of factors significant under our empirical
Bayes framework. The significance cutoffs are re-estimated each year with the available data. Factors are
eligible for inclusion after the sample period in the original paper, so all returns are out-of-sample. The
table shows the information ratio (alpha divided by residual volatility) for the full sample (1990-2020) with
t-statistics in parentheses.
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Figure D.2: In-Sample versus Out-of-Sample Alphas for US Factors

Note: The figure plots OLS alphas for US factors during the in-sample period (i.e., the period studied in
the original publication) versus out-of-sample alphas. In Panel A, out-of-sample is the time period before
the in-sample period. In Panel B, out-of-sample is the time period before the in-sample period. In Panel
C, out-of-sample includes both the time period before and after the in-sample period. We require at least
five years of out-of-sample data for a factor to be included, amounting to 102, 115 and 119 factors in panel
A, B and C. The figure also reports feasible GLS estimates of out-of-sample alphas on in-sample alphas and
in-sample alphas squared. To implement feasible GLS, we assume that the error variance-covariance matrix
is proportional to the full-sample CAPM residual variance-covariance matrix, Σ̂/T , described in section B.
The blue line is a local polynomial regression fit where observations are weighted by their vicinity to the
point on the x-axis. The shaded area is 95% confidence bands. The dotted line is the 45o line.
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Figure D.3: World Factor Alpha Posterior Distribution Over Time

Note: The figure reports the CAPM alpha and 95% posterior confidence interval for an equal-weighted
portfolio of World factors based on EB posteriors re-estimated in December each year. In contrast to figure
9, we re-estimate τc and τw at each point in time. Figure D.4 shows how the estimated taus evolve over
time.
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Figure D.4: World Factor Hyperparameters Over Time

Note: The figure reports the τc and τw used in figure D.3.

E Economic Benefit of More Powerful Tests
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Table E.1: The Economic Benefit of More Powerful Tests

Region
US Developed ex. US Emerging

(1) (2) (3)

Alpha 0.35∗∗∗ 0.24∗∗∗ 0.27∗∗∗

(5.05) (5.33) (3.66)

Market Beta −0.12∗∗∗ −0.09∗∗∗ −0.04∗∗∗

(−4.33) (−5.68) (−3.14)

Observations 540 420 388
Adjusted R2 0.17 0.18 0.03

Note: The dependent variable is an equal-weighted portfolio of factors that are significant under empirical
Bayes (EB), but not under OLS with the Benjamini-Yekutieli adjustment (BY). A factor is significant under
EB when the probability of a negative alpha is below 2.5%. A factor is significant under BY when the
adjusted two-sided p-value is below 5%, and the OLS alpha estimate is positive. Starting in 1959, we update
the posterior distribution and the OLS estimates by the end of each year and invest in marginally significant
factors over the subsequent year. To avoid lookahead bias, we only use factors after the sample in the
original paper has ended. We only consider factors found to be significant by the original reference. The
alpha estimates are in percentages, with t-statistics in parentheses. Standard errors are computed following
Newey and West (1987) with 6 lags. The stars indicate ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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F Accounting for Publication Bias

Harvey et al. (2016) provides a framework to estimate the total number of factors researchers
have tried. The framework is based on t-statistics of published factors and estimation frame-
work to determine the number of unobserved factors.

One set of simulations is constructed to match the baseline scenario of (Harvey et al.,
2016, Table 5.A, row 1), which estimates that researchers have tried M = 1, 297 factors,
of which 39.6% of have zero alpha and another is based on the more conservative scenario
of (Harvey et al., 2016, Table 5.B, row 1), which implies that researchers have tried 2458
factors, of which 68.3% have zero alpha. Harvey et al. (2016) states that “the average annual
Sharpe ratio for these [true] factors is 0.44.”

To incorporate these unobserved factors into our framework, we proceed as follows for
the baseline scenario. We simulate a total of 1,300 factors in 26 clusters of 50 factors per
cluster. We let all factors in 10 clusters have true alphas equal to zero while the remaining
clusters have non-zero true alphas. For each of the clusters with non-zero alphas, we set
the cluster alpha to cj = 0.44 × 10%/12 so that the monthly abnormal return corresponds
to an annual Sharpe ratio of 0.44 given the annual volatility of 10%. Finally, we draw each
factor’s true alpha from αi ∼ N(cj, τ 2w), and then simulate 70 years of monthly returns with
within-cluster correlation of 0.58 and 0.02 otherwise.52 Finally, we estimate prior parameters
τ using this data with the same method that we used on the observed data. We repeat
this simulation process and compute the average τc, which is interpreted as a value that
accounts for unobserved factors of the form implied by Harvey et al. (2016). We note that
we are implicitly assuming that the unobserved factors belong to different clusters, such that
observing new poor performing factors would lead to more shrinkage toward zero via a lower
τc, but not via different cluster mean returns.

Similarly for the conservative scenario, we simulate a total of 2500 factors in 50 clusters
of 50 factors per cluster. We let all factors in 16 clusters have true alphas equal to zero while
the remaining clusters have non-zero true alphas as described above. Figure F.1 shows the
US replication rate under these alternative hyperparameters of the prior distribution.

52The values are calibrated to match the data on US factors.
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Figure F.1: Replication Rate with Prior Estimated in Light of Unobserved Factors

Note: The figure shows how the replication rate in the US varies when changing the τc and τw parameter.
The dotted line shows our replication rate of 82.4%. The data estimate of τw is 0.21%. The green square,
highlights the value estimated in the data τc = 0.35%. The red triangle and the blue circle highlights values
that are found by estimating the empirical Bayes model according to assumptions about unobserved factors
from Harvey et al. (2016). The values are τc = 0.28% in the baseline scenario and τc = 0.20% in the
conservative scenario. A description of this approach can be found in the appendix, section F.

G Results by Cluster, Region, and Size
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Figure G.1: Replication Rates across Regions by Cluster

Note: Share of factors within each cluster where the 95% posterior intervals does not include zero.

Nano − Replication Rate: 68.1%

Micro − Replication Rate: 85.7%
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Large − Replication Rate: 79.8%
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Figure G.2: Replication Rates across Size Groups by Cluster

Note: The figure shows replication rates for US factors created within a size group using rank weights. Mega
stocks have a market cap higher than the 80th percentile of NYSE stocks, large stocks are between the 80th
and 50th percentile, small stocks are between the 50th and 20th percentile, micro stocks are between the
20th and 1st percentile and nano stocks have a market cap below the 1st percentile of NYSE stocks.
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H Further Results on the Tangency Portfolio

In this section, we elaborate on the influence of factors on the tangency portfolio (TPF).
Figure H.1 and H.2 shows the tangency weights across regions and size groups. Most notably,
the size cluster is much more important outside of the US and among smaller stocks.

The previous TPF analysis, and the results shown in figure 13 has used the 13 cluster level
portfolios in addition to the market portfolio as inputs. In the remainder of this section,
we build the TPF at the factor level by using the 119 US factors that were found to be
significant by an earlier paper. We start the analysis in 1972 to ensure that all factors have
non-missing data. The main issue with a factor level analysis, is estimating the covariance
matrix. We follow Pedersen et al. (2021) and adjust the covariance matrix by shrinking the
correlations towards zero

Σw = σ[(1− w)Ω+ wI]σ

where Ω is the sample correlation matrix, σ is a matrix with the sample volatilities on the
diagonal and zero elsewhere, I is the identity matrix and w is a shrinkage parameter. The
tangency weights are recovered from the standard formula on the adjusted covariance matrix.
This approach requires choosing the shrinkage parameter. Ideally, we want to choose the
amount of shrinkage to maximize out-of-sample Sharpe ratio. We implement this intuition
via. five-fold cross validation. In each fold, we estimate the tangency weights with a given
shrinkage parameter using 4/5 of the data, and compute the realized Sharpe ratio on the
remaining 1/5. We repeat this procedure 5 times, and compute the average realized Sharpe
ratio for w ∈ (0, 0.1, . . . , 1). In unreported results, we find that the optimal shrinkage
parameter is w = 0.553.

Figure H.3 shows the in-sample Sharpe ratio of the tangency portfolio that are allowed
to invest in the market portfolio and factors from one clusters. The dashed line shows the
Sharpe ratio of the market portfolio. Figure H.4 shows the in-sample Sharpe ratio attainable
after excluding factors from one cluster at a time. Figure H.5 shows the importance of each
factor for the cluster TPF. Specifically, we report the drop in the maximal attainable Sharpe
ratio within a cluster after excluding one of the cluster factors. Finally, figure H.6 shows the
importance of each factor for the TPF that includes all factors. Specifically, we eliminate
each factor one at a time and record the resulting drop in the in-sample Sharpe ratio.

53The average monthly out-of-sample Sharpe ratio with w = 0.5 is 0.56 compared to 0.43 from the
unconstrained solution (w = 0).
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Figure H.1: Tangency Portfolio Weights across Regions

Note: Within each region, we compute the cluster return as the equal weighted return of all factors with data
available at a given point in time. We further add the regional market return. We estimate the tangency
weights following the method of Britten-Jones (1999) with a non-negativity constraint. The error bars are
the 90% confidence intervals based on 10,000 bootstrap samples and the percentile method. The data starts
in 1952 for the US, 1987 for Developed ex. US and 1994 for Emerging.
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Figure H.2: Tangency Portfolio Weights across Size Groups

Note: Within each size group, we compute the cluster return as the equal weighted return of all factors with
data available at a given point in time. We only use US data. We add the US market return. We estimate
the tangency weights following the method of Britten-Jones (1999) with a non-negativity constraint. The
error bars are the 90% confidence intervals based on 10,000 bootstrap samples and the percentile method.
The data starts in 1963.
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Figure H.3: Market + Cluster

Note: Each bar shows the monthly in-sample Sharpe ratio of a tangency portfolio that is allowed to invest
in all factor from one cluster plus the market portfolio. We use the simple enhanced portfolio optimization
method from Pedersen et al. (2021), with a shrinkage parameter of w = 0.5. The analysis is done on US
factors from 1972 to 2020.
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Figure H.4: Excluding One Cluster
Note: Each bar shows the monthly in-sample Sharpe ratio of a tangency portfolio that is allowed to invest
in the market portfolio and factors from all clusters except one. We use the simple enhanced portfolio
optimization method from Pedersen et al. (2021), with a shrinkage parameter of w = 0.5. The analysis is
done on US factors from 1972 to 2020.
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Figure H.5: Factor importance for cluster TPF
Note: Each bar shows the difference in the monthly in-sample Sharpe ratio of a tangency portfolio that
invest in all factors within a cluster and a tangency portfolio that invest in all cluster factors except one. We
show individual factors by their cluster. We use the simple enhanced portfolio optimization method from
Pedersen et al. (2021), with a shrinkage parameter of w = 0.5. The analysis is done on US factors from 1972
to 2020.
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Figure H.6: Factor importance for full TPF
Note: Each bar shows the difference in the monthly in-sample Sharpe ratio of a tangency portfolio that
invest in all factors and a tangency portfolio that invest in all factor except one. We show individual factors
by their cluster. We use the simple enhanced portfolio optimization method from Pedersen et al. (2021),
with a shrinkage parameter of w = 0.5. The analysis is done on US factors from 1972 to 2020.
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Figure I.1: Clustering Factors into Themes

Note: This figures shows a hierarchical clustering of all factors into 13 themes using the sample of US stocks
from 1975-2020. Long high indicates whether the factor is long stocks with a high value of the underlying
characteristic.
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Figure I.2: Factor Theme Correlations

Note: This figure shows the average pairwise Pearson correlation between factors from different clusters
(off diagonal elements) or between factors in the same cluster (diagonal elements), using data on US stocks
during the 1975-2020 period.

J Details on Clusters, Factors, and Countries

Table J.1: Factor and Cluster Details

Variable Orig. Orig.

Description Name Citation Sample Sign Signif.

Accruals

Change in current operating work-

ing capital

cowc gr1a Richardson et al. (2005) 1962-2001 -1 1

Operating accruals oaccruals at Sloan (1996) 1962-1991 -1 1

Percent operating accruals oaccruals ni Hafzalla Lundholm and VanWinkle

(2011)

1989-2008 -1 1

Years 16-20 lagged returns, nonan-

nual

seas 16 20na Heston and Sadka (2008) 1965-2002 -1 1
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Total accruals taccruals at Richardson et al. (2005) 1962-2001 -1 1

Percent total accruals taccruals ni Hafzalla Lundholm and VanWinkle

(2011)

1989-2008 -1 1

Debt Issuance

Abnormal corporate investment capex abn Titman Wei and Xie (2004) 1973-1996 -1 1

Growth in book debt (3 years) debt gr3 Lyandres Sun and Zhang (2008) 1970-2005 -1 1

Change in financial liabilities fnl gr1a Richardson et al. (2005) 1962-2001 -1 1

Change in noncurrent operating li-

abilities

ncol gr1a Richardson et al. (2005) 1962-2001 -1 0

Change in net financial assets nfna gr1a Richardson et al. (2005) 1962-2001 1 1

Earnings persistence ni ar1 Francis et al. (2004) 1975-2001 1 0

Net operating assets noa at Hirshleifer et al. (2004) 1964-2002 -1 1

Investment

Liquidity of book assets aliq at Ortiz-Molina and Phillips (2014) 1984-2006 -1 0

Asset Growth at gr1 Cooper Gulen and Schill (2008) 1968-2003 -1 1

Change in common equity be gr1a Richardson et al. (2005) 1962-2001 -1 1

CAPEX growth (1 year) capx gr1 Xie (2001) 1971-1992 -1 0

CAPEX growth (2 years) capx gr2 Anderson and Garcia-Feijoo (2006) 1976-1998 -1 1

CAPEX growth (3 years) capx gr3 Anderson and Garcia-Feijoo (2006) 1976-1998 -1 1

Change in current operating assets coa gr1a Richardson et al. (2005) 1962-2001 -1 1

Change in current operating liabil-

ities

col gr1a Richardson et al. (2005) 1962-2001 -1 1

Hiring rate emp gr1 Belo Lin and Bazdresch (2014) 1965-2010 -1 1

Inventory growth inv gr1 Belo and Lin (2011) 1965-2009 -1 1

Inventory change inv gr1a Thomas and Zhang (2002) 1970-1997 -1 1

Change in long-term net operating

assets

lnoa gr1a Fairfield Whisenant and Yohn

(2003)

1964-1993 -1 1

Mispricing factor: Management mispricing mgmtStambaugh and Yuan (2016) 1967-2013 1 1

Change in noncurrent operating as-

sets

ncoa gr1a Richardson et al. (2005) 1962-2001 -1 1

Change in net noncurrent operating

assets

nncoa gr1a Richardson et al. (2005) 1962-2001 -1 1

Change in net operating assets noa gr1a Hirshleifer et al. (2004) 1964-2002 -1 1

Change PPE and Inventory ppeinv gr1a Lyandres Sun and Zhang (2008) 1970-2005 -1 1

Long-term reversal ret 60 12 De Bondt and Thaler (1985) 1926-1982 -1 1

Sales Growth (1 year) sale gr1 Lakonishok Shleifer and Vishny

(1994)

1968-1989 -1 1

Sales Growth (3 years) sale gr3 Lakonishok Shleifer and Vishny

(1994)

1968-1989 -1 1

Sales growth (1 quarter) saleq gr1 1967-2016 -1 0

Years 2-5 lagged returns, nonannual seas 2 5na Heston and Sadka (2008) 1965-2002 -1 1

Low Leverage

Firm age age Jiang Lee and Zhang (2005) 1965-2001 -1 1

Liquidity of market assets aliq mat Ortiz-Molina and Phillips (2014) 1984-2006 -1 0

Book leverage at be Fama and French (1992) 1963-1990 -1 0

The high-low bid-ask spread bidaskhl 21d Corwin and Schultz (2012) 1927-2006 1 1

Cash-to-assets cash at Palazzo (2012) 1972-2009 1 0

Net debt-to-price netdebt me Penman Richardson and Tuna

(2007)

1962-2001 -1 1

Earnings volatility ni ivol Francis et al. (2004) 1975-2001 1 0
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R&D-to-sales rd sale Chan Lakonishok and Sougiannis

(2001)

1975-1995 1 0

R&D capital-to-book assets rd5 at Li (2011) 1952-2004 1 0

Asset tangibility tangibility Hahn and Lee (2009) 1973-2001 1 0

Altman Z-score z score Dichev (1998) 1981-1995 1 1

Low Risk

Market Beta beta 60m Fama and MacBeth (1973) 1935-1968 -1 1

Dimson beta beta dimson 21dDimson (1979) 1955-1974 -1 0

Frazzini-Pedersen market beta betabab 1260d Frazzini and Pedersen (2014) 1926-2012 -1 1

Downside beta betadown 252d Ang Chen and Xing (2006) 1963-2001 -1 1

Earnings variability earnings variabilityFrancis et al. (2004) 1975-2001 -1 0

Idiosyncratic volatility from the

CAPM (21 days)

ivol capm 21d 1967-2016 -1 0

Idiosyncratic volatility from the

CAPM (252 days)

ivol capm 252d Ali Hwang and Trombley (2003) 1976-1997 -1 1

Idiosyncratic volatility from the

Fama-French 3-factor model

ivol ff3 21d Ang et al. (2006) 1963-2000 -1 1

Idiosyncratic volatility from the q-

factor model

ivol hxz4 21d 1967-2016 -1 0

Cash flow volatility ocfq saleq std Huang (2009) 1980-2004 -1 1

Maximum daily return rmax1 21d Bali Cakici and Whitelaw (2011) 1962-2005 -1 1

Highest 5 days of return rmax5 21d Bali, Brown, Murray and Tang

(2017)

1993-2012 -1 1

Return volatility rvol 21d Ang et al. (2006) 1963-2000 -1 1

Years 6-10 lagged returns, nonan-

nual

seas 6 10na Heston and Sadka (2008) 1965-2002 -1 1

Share turnover turnover 126d Datar Naik and Radcliffe (1998) 1963-1991 -1 1

Number of zero trades with

turnover as tiebreaker (1 month)

zero trades 21d Liu (2006) 1963-2003 1 0

Number of zero trades with

turnover as tiebreaker (6 months)

zero trades 126d Liu (2006) 1963-2003 1 1

Number of zero trades with

turnover as tiebreaker (12 months)

zero trades 252d Liu (2006) 1963-2003 1 1

Momentum

Current price to high price over last

year

prc highprc 252dGeorge and Hwang (2004) 1963-2001 1 1

Residual momentum t-6 to t-1 resff3 6 1 Blitz Huij and Martens (2011) 1930-2009 1 1

Residual momentum t-12 to t-1 resff3 12 1 Blitz Huij and Martens (2011) 1930-2009 1 1

Price momentum t-3 to t-1 ret 3 1 Jegedeesh and Titman (1993) 1965-1989 1 1

Price momentum t-6 to t-1 ret 6 1 Jegadeesh and Titman (1993) 1965-1989 1 1

Price momentum t-9 to t-1 ret 9 1 Jegedeesh and Titman (1993) 1965-1989 1 1

Price momentum t-12 to t-1 ret 12 1 Jegedeesh and Titman (1993) 1965-1989 1 1

Year 1-lagged return, nonannual seas 1 1na Heston and Sadka (2008) 1965-2002 1 1

Profit Growth

Change sales minus change Inven-

tory

dsale dinv Abarbanell and Bushee (1998) 1974-1988 1 1

Change sales minus change receiv-

ables

dsale drec Abarbanell and Bushee (1998) 1974-1988 -1 0

Change sales minus change SG&A dsale dsga Abarbanell and Bushee (1998) 1974-1988 1 0

Change in quarterly return on as-

sets

niq at chg1 1972-2016 1 0
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Change in quarterly return on eq-

uity

niq be chg1 1967-2016 1 0

Standardized earnings surprise niq su Foster Olsen and Shevlin (1984) 1974-1981 1 1

Change in operating cash flow to as-

sets

ocf at chg1 Bouchard, Krueger, Landier and

Thesmar (2019)

1990-2015 1 1

Price momentum t-12 to t-7 ret 12 7 Novy-Marx (2012) 1925-2010 1 1

Labor force efficiency sale emp gr1 Abarbanell and Bushee (1998) 1974-1988 1 0

Standardized Revenue surprise saleq su Jegadeesh and Livnat (2006) 1987-2003 1 1

Year 1-lagged return, annual seas 1 1an Heston and Sadka (2008) 1965-2002 1 1

Tax expense surprise tax gr1a Thomas and Zhang (2011) 1977-2006 1 1

Profitability

Coefficient of variation for dollar

trading volume

dolvol var 126d Chordia Subrahmanyam and An-

shuman (2001)

1966-1995 -1 1

Return on net operating assets ebit bev Soliman (2008) 1984-2002 1 1

Profit margin ebit sale Soliman (2008) 1984-2002 1 1

Pitroski F-score f score Piotroski (2000) 1976-1996 1 1

Return on equity ni be Haugen and Baker (1996) 1979-1993 1 1

Quarterly return on equity niq be Hou Xue and Zhang (2015) 1972-2012 1 1

Ohlson O-score o score Dichev (1998) 1981-1995 -1 1

Operating cash flow to assets ocf at Bouchard, Krueger, Landier and

Thesmar (2019)

1990-2015 1 1

Operating profits-to-book equity ope be Fama and French (2015) 1963-2013 1 1

Operating profits-to-lagged book

equity

ope bel1 1967-2016 1 0

Coefficient of variation for share

turnover

turnover var 126dChordia Subrahmanyam and An-

shuman (2001)

1966-1995 -1 1

Quality

Capital turnover at turnover Haugen and Baker (1996) 1979-1993 1 0

Cash-based operating profits-to-

book assets

cop at 1967-2016 1 0

Cash-based operating profits-to-

lagged book assets

cop atl1 Ball et al. (2016) 1963-2014 1 1

Change gross margin minus change

sales

dgp dsale Abarbanell and Bushee (1998) 1974-1988 1 0

Gross profits-to-assets gp at Novy-Marx (2013) 1963-2010 1 1

Gross profits-to-lagged assets gp atl1 1967-2016 1 0

Mispricing factor: Performance mispricing perf Stambaugh and Yuan (2016) 1967-2013 1 1

Number of consecutive quarters

with earnings increases

ni inc8q Barth Elliott and Finn (1999) 1982-1992 1 0

Quarterly return on assets niq at Balakrishnan Bartov and Faurel

(2010)

1976-2005 1 1

Operating profits-to-book assets op at 1963-2013 1 1

Operating profits-to-lagged book

assets

op atl1 Ball et al. (2016) 1963-2014 1 1

Operating leverage opex at Novy-Marx (2011) 1963-2008 1 1

Quality minus Junk: Composite qmj Assness, Frazzini and Pedersen

(2018)

1957-2016 1 1

Quality minus Junk: Growth qmj growth Assness, Frazzini and Pedersen

(2018)

1957-2016 1 1

Quality minus Junk: Profitability qmj prof Assness, Frazzini and Pedersen

(2018)

1957-2016 1 1
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Quality minus Junk: Safety qmj safety Assness, Frazzini and Pedersen

(2018)

1957-2016 1 1

Assets turnover sale bev Soliman (2008) 1984-2002 1 1

Seasonality

Market correlation corr 1260d Assness, Frazzini, Gormsen, Peder-

sen (2020)

1925-2015 -1 1

Coskewness coskew 21d Harvey and Siddique (2000) 1963-1993 -1 1

Net debt issuance dbnetis at Bradshaw Richardson and Sloan

(2006)

1971-2000 -1 1

Kaplan-Zingales index kz index Lamont Polk and Saa-Requejo

(2001)

1968-1995 1 1

Change in long-term investments lti gr1a Richardson et al. (2005) 1962-2001 -1 1

Taxable income-to-book income pi nix Lev and Nissim (2004) 1973-2000 1 1

Years 2-5 lagged returns, annual seas 2 5an Heston and Sadka (2008) 1965-2002 1 1

Years 6-10 lagged returns, annual seas 6 10an Heston and Sadka (2008) 1965-2002 1 1

Years 11-15 lagged returns, annual seas 11 15an Heston and Sadka (2008) 1965-2002 1 1

Years 11-15 lagged returns, nonan-

nual

seas 11 15na Heston and Sadka (2008) 1965-2002 -1 0

Years 16-20 lagged returns, annual seas 16 20an Heston and Sadka (2008) 1965-2002 1 1

Change in short-term investments sti gr1a Richardson et al. (2005) 1962-2001 1 0

Size

Amihud Measure ami 126d Amihud (2002) 1964-1997 1 1

Dollar trading volume dolvol 126d Brennan Chordia and Subrah-

manyam (1998)

1966-1995 -1 1

Market Equity market equity Banz (1981) 1926-1975 -1 1

Price per share prc Miller and Scholes (1982) 1940-1978 -1 1

R&D-to-market rd me Chan Lakonishok and Sougiannis

(2001)

1975-1995 1 1

Skewness

Idiosyncratic skewness from the

CAPM

iskew capm 21d 1967-2016 -1 0

Idiosyncratic skewness from the

Fama-French 3-factor model

iskew ff3 21d Bali Engle and Murray (2016) 1925-2021 -1 1

Idiosyncratic skewness from the q-

factor model

iskew hxz4 21d 1967-2016 -1 0

Short-term reversal ret 1 0 Jegadeesh (1990) 1929-1982 -1 1

Highest 5 days of return scaled by

volatility

rmax5 rvol 21d Assness, Frazzini, Gormsen, Peder-

sen (2020)

1925-2015 -1 1

Total skewness rskew 21d Bali Engle and Murray (2016) 1925-2021 -1 1

Value

Assets-to-market at me Fama and French (1992) 1963-1990 1 0

Book-to-market equity be me Rosenberg Reid and Lanstein

(1985)

1973-1984 1 1

Book-to-market enterprise value bev mev Penman Richardson and Tuna

(2007)

1962-2001 1 1

Net stock issues chcsho 12m Pontiff and Woodgate (2008) 1970-2003 -1 1

Debt-to-market debt me Bhandari (1988) 1948-1979 1 1

Dividend yield div12m me Litzenberger and Ramaswamy

(1979)

1940-1980 1 1

Ebitda-to-market enterprise value ebitda mev Loughran and Wellman (2011) 1963-2009 1 1
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Equity duration eq dur Dechow Sloan and Soliman (2004) 1962-1998 -1 1

Net equity issuance eqnetis at Bradshaw Richardson and Sloan

(2006)

1971-2000 -1 1

Equity net payout eqnpo 12m Daniel and Titman (2006) 1968-2003 1 1

Net payout yield eqnpo me Boudoukh et al. (2007) 1984-2003 1 1

Payout yield eqpo me Boudoukh et al. (2007) 1984-2003 1 1

Free cash flow-to-price fcf me Lakonishok Shleifer and Vishny

(1994)

1963-1990 1 1

Intrinsic value-to-market ival me Frankel and Lee (1998) 1975-1993 1 0

Net total issuance netis at Bradshaw Richardson and Sloan

(2006)

1971-2000 -1 1

Earnings-to-price ni me Basu (1983) 1963-1979 1 1

Operating cash flow-to-market ocf me Desai Rajgopal and Venkatachalam

(2004)

1973-1997 1 1

Sales-to-market sale me Barbee Mukherji and Raines (1996) 1979-1991 1 1

Note: This table shows cluster names as underlined section headings and, for each cluster, a description of the
factors included, the variable name used in the code, the original reference, the sample period used in the original
reference, the sign of the factor (“1” means “long”, “-1” means “short”), and whether the original reference found
the factor to be significant (“1” means “yes”, “0” means “no”). For example, the first value factor “at me” goes
long stocks with high values of assets-to-market and shorts those with low values (and would be done the reverse
if the sign was “-1” instead of “1”).
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Table J.2: Alpha Across Regions
US Developed ex. US Emerging

Factor αOLS αEB Pr(αEB < 0) αOLS αEB Pr(αEB < 0) αOLS αEB Pr(αEB < 0)

1 aliq mat* -0.35 -0.31 1.00 -0.33 -0.27 1.00 -0.31 -0.28 1.00

2 dsale drec* -0.25 -0.22 1.00 -0.05 -0.11 0.86 -0.23 -0.18 0.95

3 bidaskhl 21d -0.24 -0.25 1.00 -0.62 -0.42 1.00 -0.50 -0.38 1.00

4 ni ivol* -0.23 -0.18 0.99 -0.20 -0.13 0.90 0.03 -0.07 0.75

5 at be* -0.16 -0.10 0.92 0.06 0.04 0.34 0.12 0.04 0.37

6 age -0.15 -0.18 1.00 -0.64 -0.44 1.00 -0.59 -0.41 1.00

7 kz index -0.13 -0.12 0.93 -0.08 -0.08 0.79 -0.32 -0.15 0.93

8 turnover var 126d -0.13 -0.12 0.96 -0.02 -0.03 0.60 0.20 0.01 0.46

9 prc -0.11 -0.02 0.60 0.02 0.06 0.26 0.07 0.07 0.23

10 sti gr1a* -0.09 -0.02 0.60 -0.01 0.03 0.37 0.17 0.08 0.21

11 dolvol var 126d -0.07 -0.07 0.85 -0.07 -0.03 0.63 0.20 0.02 0.43

12 dsale dsga* -0.07 -0.02 0.58 0.20 0.13 0.11 0.33 0.15 0.09

13 ni ar1* -0.02 -0.07 0.81 0.04 0.03 0.39 -0.29 -0.06 0.71

14 sale emp gr1* -0.01 -0.03 0.64 -0.24 -0.10 0.83 0.11 -0.00 0.51

15 netdebt me -0.01 0.03 0.32 0.11 0.11 0.13 0.20 0.12 0.13

16 z score -0.00 0.03 0.36 -0.02 0.03 0.36 0.20 0.10 0.17

17 iskew hxz4 21d* 0.01 -0.08 0.80 -0.50 -0.18 0.94 -0.37 -0.16 0.90

18 rd sale* 0.01 0.06 0.22 0.22 0.18 0.03 0.25 0.15 0.08

19 market equity 0.02 0.13 0.04 0.13 0.21 0.02 0.55 0.37 0.00

20 cash at* 0.04 0.07 0.18 0.07 0.10 0.15 0.24 0.14 0.08

21 ami 126d 0.05 0.14 0.03 0.14 0.21 0.02 0.38 0.28 0.00

22 ncol gr1a* 0.05 -0.01 0.57 -0.07 0.02 0.42 -0.08 0.02 0.41

23 debt me 0.09 0.06 0.21 0.03 0.05 0.31 -0.06 -0.00 0.51

24 ni inc8q* 0.10 0.13 0.07 0.38 0.25 0.02 0.26 0.18 0.07

25 tax gr1a 0.10 0.09 0.13 0.06 0.10 0.17 0.30 0.16 0.06

26 saleq gr1* 0.11 -0.03 0.66 0.03 0.04 0.37 -0.70 -0.16 0.91

27 ret 60 12 0.12 0.03 0.31 0.11 0.19 0.03 0.37 0.30 0.00

28 rd5 at* 0.12 0.17 0.01 0.35 0.29 0.00 0.63 0.31 0.01

29 coskew 21d 0.12 0.12 0.05 0.28 0.19 0.02 -0.04 0.08 0.20

30 saleq su 0.12 0.16 0.04 0.47 0.30 0.01 0.54 0.29 0.01

31 col gr1a 0.13 0.01 0.46 0.00 0.07 0.23 -0.11 0.05 0.31

32 iskew ff3 21d 0.13 0.08 0.18 -0.20 0.01 0.46 0.15 0.11 0.17

33 tangibility* 0.13 0.17 0.01 0.26 0.25 0.00 0.41 0.28 0.00

34 lti gr1a 0.15 0.09 0.13 -0.01 0.04 0.35 -0.17 -0.01 0.52

35 pi nix 0.16 0.14 0.05 0.06 0.11 0.14 0.09 0.12 0.13

36 bev mev 0.17 0.16 0.02 0.28 0.25 0.00 0.27 0.22 0.02

37 gp atl1* 0.18 0.20 0.01 0.22 0.24 0.01 0.53 0.31 0.00

38 at me* 0.18 0.16 0.01 0.20 0.20 0.02 0.23 0.19 0.04

39 seas 16 20na 0.19 0.04 0.32 -0.13 0.02 0.44 -0.32 -0.02 0.57

40 zero trades 21d* 0.19 0.16 0.01 0.21 0.18 0.04 0.40 0.26 0.01

41 ebit sale 0.20 0.18 0.01 0.21 0.18 0.03 0.25 0.15 0.07

42 ret 3 1 0.21 0.11 0.06 0.26 0.15 0.06 0.08 0.08 0.21

43 be me 0.23 0.22 0.00 0.32 0.29 0.00 0.32 0.27 0.01

44 op atl1 0.23 0.23 0.00 0.25 0.25 0.01 0.43 0.27 0.00

45 at turnover* 0.23 0.23 0.00 0.23 0.24 0.01 0.37 0.25 0.01

46 opex at 0.24 0.22 0.00 0.22 0.22 0.01 0.23 0.18 0.04

47 ope bel1* 0.24 0.23 0.00 0.30 0.27 0.00 0.43 0.26 0.00

48 earnings variability* 0.24 0.16 0.02 0.09 0.07 0.24 -0.00 0.06 0.28

49 seas 1 1na 0.26 0.17 0.01 0.23 0.14 0.06 0.28 0.21 0.02

50 dolvol 126d 0.26 0.34 0.00 0.27 0.35 0.00 0.53 0.43 0.00

51 be gr1a 0.26 0.13 0.05 0.09 0.15 0.06 -0.10 0.10 0.16

52 div12m me 0.27 0.27 0.00 0.51 0.46 0.00 0.71 0.51 0.00

53 sale me 0.28 0.26 0.00 0.35 0.33 0.00 0.42 0.34 0.00
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54 ocfq saleq std 0.28 0.25 0.00 0.38 0.30 0.00 0.69 0.39 0.00

55 niq at 0.29 0.36 0.00 0.75 0.57 0.00 0.96 0.58 0.00

56 sale gr3 0.29 0.16 0.02 0.09 0.19 0.03 0.15 0.23 0.02

57 sale gr1 0.30 0.16 0.02 0.17 0.20 0.02 -0.19 0.08 0.22

58 ni be 0.30 0.28 0.00 0.42 0.33 0.00 0.31 0.23 0.01

59 ivol capm 252d 0.30 0.26 0.00 0.41 0.30 0.00 0.21 0.23 0.01

60 seas 2 5na 0.31 0.22 0.00 0.36 0.41 0.00 0.67 0.54 0.00

61 ret 6 1 0.31 0.22 0.00 0.33 0.23 0.01 0.38 0.29 0.00

62 seas 11 15na* 0.31 0.22 0.00 -0.07 0.08 0.23 -0.26 0.05 0.34

63 o score 0.31 0.29 0.00 0.38 0.33 0.00 0.45 0.31 0.00

64 beta dimson 21d* 0.31 0.26 0.00 0.33 0.24 0.00 0.06 0.14 0.08

65 aliq at* 0.31 0.17 0.01 0.04 0.14 0.08 -0.07 0.12 0.13

66 dgp dsale* 0.31 0.23 0.00 -0.11 0.02 0.44 -0.03 0.02 0.43

67 rd me 0.32 0.39 0.00 0.36 0.39 0.00 0.39 0.39 0.00

68 corr 1260d 0.32 0.29 0.00 0.24 0.27 0.00 0.26 0.26 0.00

69 qmj safety 0.33 0.34 0.00 0.32 0.36 0.00 0.81 0.51 0.00

70 emp gr1 0.34 0.22 0.00 0.16 0.28 0.00 0.50 0.41 0.00

71 eq dur 0.34 0.33 0.00 0.38 0.37 0.00 0.52 0.41 0.00

72 betadown 252d 0.35 0.31 0.00 0.48 0.36 0.00 0.25 0.27 0.00

73 prc highprc 252d 0.35 0.26 0.00 0.38 0.27 0.00 0.40 0.32 0.00

74 turnover 126d 0.36 0.32 0.00 0.50 0.39 0.00 0.50 0.39 0.00

75 ret 1 0 0.36 0.29 0.00 0.20 0.28 0.00 0.07 0.20 0.03

76 gp at 0.36 0.37 0.00 0.31 0.36 0.00 0.78 0.49 0.00

77 beta 60m 0.37 0.32 0.00 0.38 0.32 0.00 0.43 0.35 0.00

78 taccruals at 0.37 0.20 0.01 0.06 0.15 0.07 -0.00 0.12 0.13

79 zero trades 126d 0.38 0.34 0.00 0.52 0.41 0.00 0.51 0.41 0.00

80 ival me* 0.38 0.35 0.00 0.38 0.37 0.00 0.40 0.36 0.00

81 seas 2 5an 0.39 0.38 0.00 0.55 0.45 0.00 0.46 0.41 0.00

82 ope be 0.39 0.36 0.00 0.45 0.39 0.00 0.49 0.36 0.00

83 sale bev 0.40 0.39 0.00 0.32 0.35 0.00 0.59 0.41 0.00

84 niq be 0.41 0.43 0.00 0.83 0.61 0.00 0.92 0.59 0.00

85 niq at chg1* 0.41 0.38 0.00 0.18 0.32 0.00 0.90 0.48 0.00

86 ret 9 1 0.41 0.32 0.00 0.42 0.32 0.00 0.57 0.44 0.00

87 taccruals ni 0.42 0.22 0.00 0.04 0.12 0.11 -0.18 0.04 0.34

88 dbnetis at 0.42 0.37 0.00 0.14 0.28 0.00 0.59 0.41 0.00

89 ebit bev 0.42 0.39 0.00 0.33 0.35 0.00 0.62 0.41 0.00

90 iskew capm 21d* 0.42 0.33 0.00 -0.04 0.16 0.05 0.21 0.24 0.01

91 eqpo me 0.42 0.38 0.00 0.37 0.37 0.00 0.43 0.37 0.00

92 seas 16 20an 0.42 0.38 0.00 0.51 0.38 0.00 0.22 0.33 0.00

93 op at 0.42 0.40 0.00 0.46 0.42 0.00 0.52 0.40 0.00

94 betabab 1260d 0.42 0.39 0.00 0.61 0.50 0.00 0.70 0.53 0.00

95 seas 1 1an 0.42 0.36 0.00 0.47 0.36 0.00 0.11 0.23 0.01

96 ivol capm 21d* 0.42 0.38 0.00 0.53 0.43 0.00 0.45 0.40 0.00

97 ni me 0.43 0.41 0.00 0.41 0.43 0.00 0.76 0.55 0.00

98 seas 11 15an 0.43 0.38 0.00 0.20 0.31 0.00 0.39 0.34 0.00

99 at gr1 0.43 0.29 0.00 0.08 0.22 0.01 0.24 0.31 0.00

100 zero trades 252d 0.44 0.40 0.00 0.57 0.45 0.00 0.54 0.45 0.00

101 ivol hxz4 21d* 0.44 0.39 0.00 0.38 0.37 0.00 0.88 0.52 0.00

102 ebitda mev 0.44 0.43 0.00 0.46 0.46 0.00 0.70 0.53 0.00

103 eqnpo 12m 0.45 0.44 0.00 0.64 0.58 0.00 0.72 0.58 0.00

104 capx gr3 0.45 0.31 0.00 0.41 0.39 0.00 -0.02 0.25 0.01

105 niq su 0.47 0.41 0.00 0.24 0.35 0.00 0.78 0.46 0.00

106 rvol 21d 0.47 0.42 0.00 0.52 0.42 0.00 0.33 0.35 0.00

107 ivol ff3 21d 0.48 0.43 0.00 0.45 0.41 0.00 0.72 0.52 0.00

108 ocf me 0.49 0.46 0.00 0.31 0.40 0.00 0.92 0.63 0.00

109 ret 12 7 0.49 0.44 0.00 0.54 0.45 0.00 0.41 0.39 0.00
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110 capex abn 0.49 0.35 0.00 0.27 0.32 0.00 0.06 0.27 0.01

111 niq be chg1* 0.50 0.44 0.00 0.20 0.35 0.00 0.87 0.50 0.00

112 chcsho 12m 0.50 0.46 0.00 0.42 0.41 0.00 0.28 0.33 0.00

113 resff3 6 1 0.51 0.39 0.00 0.56 0.43 0.00 0.47 0.41 0.00

114 eqnpo me 0.51 0.47 0.00 0.35 0.40 0.00 0.62 0.49 0.00

115 coa gr1a 0.51 0.37 0.00 0.17 0.30 0.00 0.26 0.35 0.00

116 qmj growth 0.52 0.44 0.00 0.24 0.29 0.00 0.25 0.26 0.01

117 eqnetis at 0.52 0.49 0.00 0.54 0.52 0.00 0.59 0.51 0.00

118 ret 12 1 0.52 0.42 0.00 0.47 0.37 0.00 0.47 0.41 0.00

119 rskew 21d 0.52 0.42 0.00 0.08 0.26 0.01 0.19 0.27 0.00

120 netis at 0.53 0.50 0.00 0.53 0.52 0.00 0.68 0.55 0.00

121 seas 6 10na 0.53 0.47 0.00 0.65 0.50 0.00 0.36 0.40 0.00

122 mispricing perf 0.55 0.52 0.00 0.57 0.51 0.00 0.53 0.46 0.00

123 f score 0.56 0.51 0.00 0.51 0.47 0.00 0.57 0.45 0.00

124 rmax1 21d 0.56 0.50 0.00 0.59 0.48 0.00 0.38 0.40 0.00

125 ocf at chg1 0.56 0.49 0.00 0.48 0.45 0.00 0.46 0.43 0.00

126 seas 6 10an 0.57 0.54 0.00 0.99 0.65 0.00 0.33 0.48 0.00

127 fcf me 0.58 0.56 0.00 0.50 0.55 0.00 1.05 0.73 0.00

128 rmax5 21d 0.58 0.51 0.00 0.63 0.51 0.00 0.31 0.38 0.00

129 capx gr2 0.60 0.44 0.00 0.35 0.41 0.00 0.10 0.34 0.00

130 qmj prof 0.60 0.55 0.00 0.48 0.48 0.00 0.59 0.48 0.00

131 qmj 0.60 0.56 0.00 0.55 0.52 0.00 0.62 0.50 0.00

132 capx gr1* 0.64 0.47 0.00 0.32 0.41 0.00 0.15 0.37 0.00

133 debt gr3 0.67 0.50 0.00 0.36 0.43 0.00 0.22 0.39 0.00

134 rmax5 rvol 21d 0.67 0.56 0.00 0.34 0.43 0.00 0.04 0.29 0.00

135 lnoa gr1a 0.69 0.52 0.00 0.29 0.39 0.00 0.07 0.33 0.00

136 fnl gr1a 0.71 0.54 0.00 0.25 0.40 0.00 0.45 0.48 0.00

137 ppeinv gr1a 0.71 0.52 0.00 0.24 0.36 0.00 0.07 0.32 0.00

138 oaccruals at 0.71 0.54 0.00 0.38 0.48 0.00 0.65 0.57 0.00

139 inv gr1a 0.72 0.55 0.00 0.25 0.39 0.00 0.29 0.44 0.00

140 nfna gr1a 0.73 0.56 0.00 0.20 0.40 0.00 0.56 0.53 0.00

141 cop atl1 0.75 0.68 0.00 0.46 0.52 0.00 0.77 0.61 0.00

142 dsale dinv 0.75 0.57 0.00 0.21 0.30 0.00 0.03 0.25 0.01

143 oaccruals ni 0.76 0.55 0.00 0.15 0.35 0.00 0.57 0.51 0.00

144 ocf at 0.77 0.71 0.00 0.72 0.65 0.00 0.68 0.58 0.00

145 mispricing mgmt 0.78 0.63 0.00 0.58 0.64 0.00 0.66 0.68 0.00

146 ncoa gr1a 0.80 0.61 0.00 0.33 0.45 0.00 0.29 0.47 0.00

147 inv gr1 0.80 0.62 0.00 0.47 0.52 0.00 0.06 0.38 0.00

148 resff3 12 1 0.81 0.69 0.00 0.98 0.80 0.00 0.72 0.68 0.00

149 nncoa gr1a 0.82 0.63 0.00 0.28 0.43 0.00 0.30 0.47 0.00

150 cowc gr1a 0.85 0.64 0.00 0.40 0.51 0.00 0.57 0.57 0.00

151 noa at 0.87 0.66 0.00 0.36 0.47 0.00 0.22 0.44 0.00

152 noa gr1a 0.91 0.75 0.00 0.54 0.64 0.00 0.64 0.70 0.00

153 cop at* 1.02 0.91 0.00 0.62 0.69 0.00 0.85 0.73 0.00

Note: The table shows monthly alpha in percentages across three different regions. αOLS is the intercept from an
OLS regression of the factor return on the regional market return. αEB is the factor-region specific posterior mean
found via the empricial Bayes procedure applied jointly to all the factor-region specific factors. Pr(αEB < 0) is
the probability that the alpha is negative based on the posterior distribution from the EB procedure. We count a
factor as replicated if this probability is below 2.5%. The residual volatility of all strategies have been scaled to
10% annualized. A “*” indicates that the original paper did not propose the factors as a significant predictor of
realized returns.
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Table J.3: Country Information
Country MSCI Start Stocks Mega Stocks Total Market Cap Median MC

1 USA Developed 1926-01-31 4,356 449 4.28e+07 796

2 CHN Emerging 1991-02-28 4,007 102 1.07e+07 816

3 JPN Developed 1986-01-31 3,867 88 7.05e+06 176

4 HKG Developed 1986-01-31 2,352 61 5.33e+06 92

5 GBR Developed 1985-12-31 1,650 36 3.14e+06 158

6 FRA Developed 1986-01-31 693 36 2.94e+06 121

7 SAU Emerging 2000-02-29 199 8 2.61e+06 460

8 DEU Developed 1986-01-31 659 36 2.58e+06 155

9 IND Emerging 1988-09-30 3,527 26 2.57e+06 10

10 KOR Emerging 1986-02-28 2,258 21 2.09e+06 131

11 CAN Developed 1982-03-31 718 35 2.08e+06 198

12 TWN Emerging 1988-02-29 1,951 12 1.77e+06 121

13 AUS Developed 1985-11-30 1,702 19 1.68e+06 51

14 CHE Developed 1986-01-31 233 22 1.66e+06 863

15 NLD Developed 1986-01-31 119 17 1.11e+06 939

16 SWE Developed 1986-01-31 688 16 1.00e+06 82

17 ITA Developed 1986-01-31 359 11 7.68e+05 121

18 ESP Developed 1986-01-31 182 12 7.02e+05 239

19 RUS Emerging 1995-08-31 186 11 6.48e+05 184

20 DNK Developed 1986-01-31 161 8 5.90e+05 184

21 BRA Emerging 1988-05-31 220 6 5.90e+05 575

22 SGP Developed 1986-01-31 562 7 5.31e+05 59

23 THA Emerging 1986-07-31 762 5 5.30e+05 75

24 IDN Emerging 1989-01-31 656 6 4.93e+05 82

25 MYS Emerging 1986-01-31 923 2 4.44e+05 55

26 ZAF Emerging 1986-01-31 261 3 4.07e+05 137

27 BEL Developed 1986-01-31 131 4 3.94e+05 431

28 NOR Developed 1986-01-31 272 3 3.44e+05 230

29 MEX Emerging 1986-02-28 117 3 3.39e+05 992

30 FIN Developed 1986-01-31 152 6 3.15e+05 218

31 PHL Emerging 1986-01-31 248 2 2.66e+05 164

32 TUR Emerging 1990-03-31 389 1 2.38e+05 119

33 ARE Emerging 2001-06-30 104 4 2.29e+05 284

34 ISR Developed 1994-12-31 415 1 2.23e+05 110

35 VNM Frontier 2006-08-31 713 0 1.80e+05 18

36 POL Emerging 1993-07-31 706 1 1.78e+05 14

37 CHL Emerging 1989-01-31 174 0 1.71e+05 221

38 QAT Emerging 2001-12-31 47 2 1.65e+05 971

39 IRL Developed 1986-01-31 33 4 1.65e+05 652

40 NZL Developed 1986-01-31 122 0 1.38e+05 196

41 AUT Developed 1986-01-31 68 0 1.26e+05 327

42 KWT Frontier 2001-01-31 163 2 9.84e+04 80

43 PER Emerging 1990-01-31 103 0 8.95e+04 81

44 COL Emerging 1989-01-31 44 1 8.81e+04 404

45 PRT Developed 1986-08-31 44 2 8.55e+04 97

46 MAR Frontier 1995-09-30 71 0 6.51e+04 183

47 GRC Emerging 1988-09-30 149 0 5.20e+04 33

48 PAK Emerging 1992-09-30 411 0 4.97e+04 19

49 ARG Emerging 1988-09-30 68 1 4.95e+04 113

50 NGA Frontier 1993-11-30 150 0 4.68e+04 11

51 BGD Frontier 2002-05-31 324 0 4.40e+04 30

52 EGY Emerging 1996-12-31 204 0 3.87e+04 46
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53 HUN Emerging 1993-06-30 33 0 2.70e+04 54

54 CZE Emerging 1995-01-31 14 0 2.67e+04 282

55 ROU Frontier 1997-11-30 76 0 2.55e+04 29

56 BHR Frontier 2001-03-31 26 0 2.14e+04 243

57 KEN Frontier 1993-11-30 50 0 2.09e+04 30

58 HRV Frontier 1997-11-30 73 0 2.07e+04 35

59 BGR Standalone 1995-12-31 113 0 1.68e+04 24

60 JOR Frontier 1993-08-31 154 0 1.63e+04 18

61 OMN Frontier 1998-03-31 107 0 1.62e+04 35

62 LKA Frontier 1987-06-30 265 0 1.55e+04 15

63 TTO Standalone 1997-08-31 19 0 1.29e+04 292

64 KAZ Frontier 2009-06-30 12 0 1.21e+04 394

65 ISL Standalone 1995-12-31 22 0 1.20e+04 329

66 JAM Standalone 1993-12-31 66 0 1.13e+04 29

67 SVN Frontier 1995-03-31 22 0 8.50e+03 122

68 TUN Frontier 1995-09-30 74 0 8.46e+03 38

69 CIV Frontier 2002-04-30 39 0 7.61e+03 85

70 MUS Frontier 1995-08-31 62 0 7.14e+03 48

71 LUX Not Rated 1986-01-31 8 0 7.14e+03 393

72 LTU Frontier 1995-10-31 28 0 5.51e+03 61

73 MLT Standalone 1995-08-31 22 0 5.05e+03 124

74 LBN Standalone 1997-11-30 8 0 4.12e+03 335

75 EST Frontier 1996-01-31 19 0 3.48e+03 69

76 TZA Not Rated 2000-07-31 16 0 3.34e+03 16

77 SRB Frontier 2009-09-30 29 0 3.17e+03 10

78 BWA Standalone 1995-09-30 22 0 3.13e+03 91

79 SVK Not Rated 1986-01-31 10 0 3.12e+03 99

80 CYP Not Rated 1994-01-31 37 0 3.12e+03 21

81 PSE Standalone 2008-07-31 27 0 2.97e+03 59

82 GHA Not Rated 1997-11-30 16 0 2.89e+03 67

83 BMU Not Rated 2007-08-31 8 0 2.51e+03 118

84 NAM Not Rated 1996-06-30 8 0 2.18e+03 329

85 MWI Not Rated 2008-08-31 12 0 2.15e+03 118

86 ECU Not Rated 1999-04-30 2 0 1.85e+03 927

87 LVA Not Rated 1997-10-31 20 0 1.17e+03 13

88 UGA Not Rated 2011-10-31 9 0 1.15e+03 97

89 ZMB Not Rated 1996-03-31 10 0 5.27e+02 26

90 UKR Standalone 2008-02-29 4 0 3.28e+02 52

91 GGY Not Rated 2015-04-30 2 0 2.25e+02 113

92 IRN Not Rated 2002-05-31 0 0 0.00e+00 0

93 URY Not Rated 1996-06-30 0 0 0.00e+00 0

All 4.021700e+04 1,092 1.01e+08

Note: The table shows summary statistics by the country where a security is listed. We include common stocks
that are the primary security of the underlying firm, traded on a standard exchange, with non-missing return and
market equity data. Country is the ISO code of the underlying exchange country. For further information, see
https://en.wikipedia.org/wiki/List of ISO 3166 country codes. MSCI shows the MSCI classification of each coun-
try as of January 7th 2021. For the most recent classification, see https://www.msci.com/market-classification.
Start is the first date with a valid observation. In the next 4 columns, the data is shown as of December 31st
2020. Stocks is the number of stocks available. Mega stocks is the number of stocks with a market cap above the
80th percentile of NYSE stocks. Total Market Cap is the aggregate market cap in million USD. Median MC is
the median market cap in million USD.
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Data Documentation

K Global Factor Data Documentation
We end the Internet Appendix with a documentation of our global factor data and how to use it to replicate our

results and for future research. We will continue to update this data and its documentation as seen on our websites.

The online document also contains instructions on how to run the code, bug fixes, and so on.

K.1 Identifier Variables
Here we define important identifying variables for our empirical analysis. We assign stocks to countries by excntry.

We assign stocks to size groups via size grp. We only include stocks with 1 on all the the obs main, exch main,

primary sec and common indicators.

Table K.1: Identifier Variables

Name Description

excntry
The country of the exchange where the security is traded. Usually expressed as an ISO currency code with
the exception of mul which indicates a multi country exchange54

size grp

This groups each firm into one of five categories: Mega, Large, Small, Micro and Nano cap. The groups are
non-overlapping and the breakpoints are based on the market equity of NYSE stocks. In particular, Mega
caps are all stocks with market equity larger than the 80th percentile of NYSE stocks, Large caps are all
remaining stocks larger than the 50th percentile, Small caps are larger than the 20th percentile, Micro caps
are larger than the 1st percentile and Nano caps are the remaining stocks.

obs main
If there are more than one firm observations for one date, this identifies if the observation is considered as the
’main’ observation. If available, CRSP observations are considered as the ’main’ observation.

exch main
Indicator for main exchanges. If CRSP is the source, main exchanges are those with crsp exchcd 1, 2 and 3.
If Compustat is the source, main exchanges are all comp exchg except 0, 1, 2, 3, 4, 13, 15, 16, 17, 18, 19, 20,
21, 127, 150, 157, 229, 263, 269, 281, 283, 290, 320, 326, 341, 342, 347, 348, 349, 352.

primary sec
Primary security as identified by Compustat. A ’gvkey’ can have up to three different primary securities (’iid)’
at a given time (US, CA, and international). All observations from CRSP has primary sec=1.

common
Indicator for common stocks. If CRSP is the source, common is one if the SHRCD variable is 10, 11 or 12. If
Compustat is the source, common is one if TPCI is ’0’

K.2 Helper Functions
This section describes functions that we use to create variables. Many of the functions are used for variables with

quarterly, monthly and daily frequencies, and these are specified by “ zQ”, “ zM” and “ zD” respectively, where “z”

is the number of quarters, months or days that the function is referencing. For example, COVAR 12M(X, Y) is the

covariance of variables X and Y over the past 12 months.

Table K.2: Helper Functions

Function Name Description

Mean Xz
1
z

∑z−1
n=0 Xt−n

Variance VARC z(X) 1
z−1

∑z−1
n=0(Xt−n −Xtz)

2

Covariance COVAR z(X, Y) 1
z−1

∑z−1
n=0(Xt−n −Xtz)(Yt−n − Ytz)

Standard Deviation σz(X)
√

V ARC z(X)

Skewness SKEW z(X) 1
z×σz(X)3

∑z−1
n=0(Xt−n −Xtz)

3

54Typically over the counter exchanges.
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Function Name Description

Standardized Unexpected Realization SUR z(X)
Xt−(Xt−3+(Xt−3−Xt−15)z/4)

σz(Xt−3−Xt−15)

Change to Expectations CHG TO EXP(X) Xt
(Xt−12+Xt−24)/2

Maximum MAXn z(X) The maximum n values of given input.

Quality Minus Junk Helpers

Earnings Volatility EV OL
ROEQ BE STD × 2. If this is unavailable, we use
ROE BE STD.

Rank of Variable rV ar Cross-sectional rank of Var within a country55

Z transformation ZV (rV ar) rV AR− rV ARz
t( rV AR)

K.3 Accounting Characteristics
Datasets

� COMP.FUNDA

� COMP.FUNDQ

� COMP.G FUNDA

� COMP.G FUNDQ

General Information

� We create characteristics for annual and quarterly accounting data separately. We then take the most recent

characteristics value from each dataset to create the final dataset.

� We assume that accounting variables are publically available 4 months after the end of the accounting period.

� In describing accounting variables, we use the Compustat item names from the annual dataset. The equivalent

item name in the quarterly dataset can be found by adding a ‘q’ or ‘y’ to the end of the annual item name.

Specifically, ‘q’ indicates a value calculated over one quarter while ‘y’ refers to the cummulative value over

the quarters with data available within a fiscal year.

Annualized Accounting Variables from Quarterly Data

� The value of a balance sheet item such as asset or book equity has the same meaning in the annual and the

quarterly data. It is the value by the end of a fiscal period.

� The value of an income or cash flow statement item is different. In the annual data, it is calculated over

one year. However, in the quarterly data, it is calculated over one quarter. To make quarterly income and

cash flows items comparable to the corresponding annual item, we take the sum of the item over the last four

quarters.

55OACCRUALS AT , BETABAB 1260d, DEBT AT and EV OL are sorted in descending order. All
other variables are sorted in ascending order.
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Accounting Variables

The abbreviation is used to refer to the accounting variable. A suffix of ’*’ indicates that we have altered the original

Compustat item to increase the coverage or to create a variable that is a part of creating a characteristic in the final

dataset. The characteristic name will reflect the accounting name except the ’*’ suffix. As an example, ’gp at’ is

gross profit scaled by assets. In general, we will refer to Compustat variables using capital letters.

Table K.3: Accounting Variables

Name Abbreviation Construction

Income Statement
Sales sale* We prefer SALE. If this is unavailable, we use REVT
Cost of Goods Sold cogs Compustat item COGS
Gross Profit gp* We prefer to use GP. If this is unavailable we use sale*-COGS
Selling, General and Administrative
Expenses

xsga Compustat item XSGA

Advertising Expenses xad
Compustat item XAD. Note that this is not available in Com-
pustat Global

Research and Development Expenses xrd
Compustat item XRD. Note that this is not available in Com-
pustat Global

Staff Expenses xlr Compustat item XLR
Special Items spi Compustat item SPI

Operating Expenses opex*
We prefer to use XOPR. If this is unavailable, we use
COGS+XSGA

Operating Income Before Depreciation ebitda*
We prefer to use EBITDA. If this is unavailable, we use
OIBDP. If this is unavailable, we use SALE*-OPEX*. If this
is unavailable, we use GP*-XSGA

Depreciation and Amortization dp Compustat Item DP

Operating Income After Depreciation ebit*
We prefer to use EBIT. If this is unavailable, we use OIADP.
If this is unavailable, we use EBITDA*-DP

Interest Expenses int Compustat item XINT

Operating Profit ala Ball et al (2015) op*
We use EBITDA* + XRD. If XRD is unavailable, we set it to
zero

Operating Profit to Equity ope*

We use EBITDA*-XINT. Note that we target the same vari-
able as the numerator of the profitability characteristic used
to create the Robust-minus weak factor in the fama-French 5
factor model (Fama and French, 2015)

Earnings before Tax and Extraordi-
nary Items

pi*
We prefer to use PI. If this is unavailable we use EBIT*-
XINT+SPI+NOPI where we set SPI and NOPI to zero if
missing

Income Tax tax Compustat item TXT

Extraordinary Items and Discontinued
Operations

xido*

We prefer to use XIDO. If this is unavailable, we use XI+DO
where we set DO to zero if missing. The reason why we
set missing DO to zero is because it is not available in
COMP.G FUNDQ

Net Income ni*
We prefer to use IB. If this is unavailable, we use NI-XIDO*.
If this is unavailable, we prefer PI*-TXT-MII. If MII is un-
availble, it is set to zero

Net Income Including Extraordinary
Items

nix*
We prefer NI. If this is not available, we prefer NI*+XIDO*. If
XIDO* is unavailable, we set it to zero. If that is unavailable,
we prefer NI*+XI+DO

Firm Income fi* We use NIX*+XINT
Dividends for Common Shareholds dvc Compustat Item DVC
Total Dividends div* We prefer DVT. If this is not available, we use DV
Income Before Extraordinary Items ni qtr* We use IBQ
Net Sales sale qtr* We use SALEQ

Cash Flow Statement
Capital Expenditures capx Compustat item CAPX
Capital Expenditures to Sales capex sale* We use CAPX / SALE*

Free Cash Flow fcf*
We use OCF*-CAPX. Note that the free cash flow is com-
puted before financing activities and sale of assets is taken
into account

Equity Buyback eqbb*
We use PRSTKC+PURTSHR Equity Buyback is mainly
PRSTKC in NA and PURTSHR in GLOBAL. Either of
PRSTKC or PURTSHR are allowed to be missing

Equity Issuance eqis* Compustat item SSTK
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Name Abbreviation Construction

Equity Net Issuance eqnetis*
We use EQIS*-EQBB*. Either EQIS* or EQBB* are allowed
to be missing

Net Equity Payout eqpo* We use DIV*+EQBB*
Equity Net Payout eqnpo* We use DIV*-EQNETIS*

Net Long-Term Debt Issuance dltnetis*

We prefer to use DLTIS-DLTR where we only require that
one of the items are non-missing. If this is unavailable, we
use LTDCH. If this is unavailable we use the yearly change in
long-term book debt DLTT

Net Short-Term Debt Issuance dstnetis*
We prefer DLCCH. If this is unavailable, we use the yearly
change in short-term book debt DLC

Net Debt Issuance dbnetis*
We use DLTNETIS*+DSTNETIS* and only require one of
the items to be non-missing

Net Issuance netis*
We use EQNETIS*+DBNETIS*. Either EQNETIS* or
DBNETIS* are allowed to be missing

Financial Cash Flow fincf*
We prefer FINCF. If this is unavailable, we use NETIS*-
DV+FIAO+TXBCOF. If FIAO or TXBCOF is missing, it
is set to zero

Balance Sheet - Assets

Total Assets at*
We prefer to use AT. If this is unavailable, then we use SEQ*
+ DLTT + LCT + LO + TXDITC. If LCT, LO, or TXDITC
are missing, then they are set to zero

Current Assets ca*
We prefer ACT. If this is unavailable, we use
RECT+INVT+CHE+ACO

Account Receivables rec Compustat item RECT
Cash and Short-Term Investment cash Compustat item CHE
Inventory inv Compustat item INVT
Non-Current Assets nca* We use AT* - CA*
Intangible Assets intan Compustat item INTAN
Investment and Advances ivao Compustat item IVAO
Property, Plans and Equipment Gross ppeg Compustat item PPEGT
Property, Plans and Equipment Net ppen Compustat item PPENT

Balance Sheet - Liabilities
Total Liabilities lt Compustat item LT

Current Liabilities cl*
We prefer LCT. If this is unavailable, we use AP+ DLC+
TXP+ LCO

Accounts Payable ap Compustat item AP
Short-Term Debt debtst Compustat item DLC
Income Tax Payable txp Compustat item TXP
Non-Current Liabilities ncl* We use LT-CL*
Long-Term Debt debtlt Compustat item DLTT

Deferred Taxes and Investment Credit txditc*
We prefer to use TXDITC. If this is unavailable, we use
TXDB+ ITCB

Balance Sheet - Financing

Preferred Stock pstk*
We prefer to use PSTKRV. If this is unavailable, we use
PSTKL. If this is unavilable, we use PSTK

Total Debt debt*
We use DLTT+ DLC. Either DLTT or DLC are allowed to
me missing

Net Debt netdebt* We use DEBT*- CHE where we set CHE to zero if missing

Shareholders Equity seq*
We prefer to use SEQ. If this is unavailable, we use
CEQ+PSTK* where we set PSTK* to zero if missing. If this
is unavailable, we use AT- LT

Book Equity be*
We use SEQ*+TXDITC*-PSTK* where we set TXDITC*
and PSTK* to zero if missing

Book Enterprise Value bev*

We prefer to use ICAPT+DLC-CHE where DLC and CHE
are set to zero if missing. If this is unavailable, we use
SEQ*+NETDEBT*+ MIB where we set MIB to zero if miss-
ing. In the global data ICAPT is reduced by Treasury stock

Balance Sheet - Summary
Net Working Capital nwc* We use CA*-CL*
Current Operating Assets coa* We use CA*- CHE
Current Operating Liabilities col* We use CL*- DLC. If DLC is missing, it is set to zero
Current Operating Working Capital cowc* We use COA*-COL*
Non-Current Operating Assets ncoa* We use AT* - CA*- IVAO
Non-Current Operating Liabilities ncol* We use LT-CL*- DLTT
Net Non-Current Operating Assets nncoa* We use NCOA*-NCOL*
Financial Assets fna* We use IVST+ IVAO. If either is missing, they are set to zero
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Name Abbreviation Construction

Financial Liabilities fnl*
We use DEBT*+PSTK*. If PSTK* is missing, it is set to
zero

Net Financial Assets nfna* We use FNA*-FNL*
Operating Assets oa* We use COA*+NCOA*
Operating Liabilities ol* We use COL*+NCOL*
Net Operating Assets noa* We use OA*-OL*
Long-Term NOA lnoa* PPENT + INTAN + AO - LO + DP

Liquid Current Assets caliq*
We prefer to use CA* - INVT. If this is unavailable, we use
CHE + RECT

Property Plant and Equipment Less
Inventories

ppeinv* PPEGT + INVT

Ortiz-Molina and Phillips Liquidity aliq*
CHE + 0.75× COA* + 0.5(AT* - CA* - INTAN). If INTAN
is missing, we set it to zero

Market Based

Market Equity me

We use the market equity for the stock we deem to the primary
security of the firm. Importantly, we do not align the market
value with the end of the fiscal period. Instead, we update the
market value on a monthly basis and align it with the most
recently available accounting characteristic

Market Enterprise Value mev* We use ME COMPANY + NETDEBT* × FX*
Market Assets mat* We use AT* × FX + BE* × FX + ME COMPANY

Accruals

Operating Accruals oacc*
We prefer NI*-OANCF. If that is unavailable, we use the
yearly change in COWC*+the yearly change in NNCOA*

Total Accruals tacc* We use OACC* + the yearly change in NFNA*

Operating Cash Flow ocf*
We prefer to use OANCF. If this is unavailable, we use NI*-
OACC*. If this is unavailable, we use NI* + DP - WCAPT.
If WCAPT is missing, we use 0.

Quarterly Operating Cash Flow ocf qtr*
We use OANCFQ. If this is unavailable, then we use IBQ +
DPQ - WCAPTQ. If WCAPTQ is unavailable, we set it to

Cash Based Operating Profitability cop*
We prefer EBITDA*+XRD-OACC*. If XRD is unavailable,
we set it to zero

Other
Employees in Thousands emp Compustat item EMP

Table K.4: Accounting Characteristics

Name Abbreviation Construction

Growth - Percentage56

Asset Growth 1yr at gr1 AT*t

AT*t−12
− 1

Sales Growth 1yr sale gr1 SALE*t

SALE*t−12
− 1

Sales Growth 3yr sale gr3 SALE*t

SALE*t−36
− 1

Total Debt Growth 3yr debt gr3 DEBT*t

DEBT*t−36
− 1

CAPX 1 year growth capx gr1 CAPXt
CAPXt−12

− 1

CAPX 2 year growth capx gr2 CAPXt
CAPXt−24

− 1

CAPX 3 year growth capx gr3 CAPXt
CAPXt−36

− 1

Quarterly Sales Growth saleq gr1 SALE QTR*t

SALE QTR*t−12
− 1

Inventory Change 1 yr inv gr1 INVt
INVt−12

− 1

56This refers to all variables with a suffix of “ gr1” or “ gr3”. The variables are percentage growth in the
accounting variables before the suffix. The number in the suffix refers to either 1 or 3 year growth. For all
variables, we only take the percentage growth if the denominator is above zero.
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Name Abbreviation Construction

Sales scaled by Employees Growth 1 yr sale emp gr1 SALE EMPt
SALE EMPt−12

− 1

Employee Growth 1 yr emp gr1
EMPt−EMPt−12

0.5×EMPt+0.5×EMPt−12

Growth - Changed Scaled by Total Assets

Inventory Change 1yr inv gr1a
INVt−INVt−12

AT*t

Investment and Advances Change 1yr lti gr1a
LTIt−LTIt−12

AT*t

Current Operating Assets Change 1yr coa gr1a
COA*t−COA*t−12

AT*t

Current Operating Liabilities Change
1yr

col gr1a
COL*t−COL*t−12

AT*t

Non-Current Operating Assets Change
1yr

ncoa gr1a
NCOA*t−NCOA*t−12

AT*t

Non-Current Operating Liabilities
Change 1yr

ncol gr1a
NCOL*t−NCOL*t−12

AT*t

Net Non-Current Operating Assets
Change 1yr

nncoa gr1a
NNCOA*t−NNCOA*t−12

AT*t

Net Operating Assets Change 1yr noa gr1a
NOA*t−NOA*t−12

AT*t

Financial Liabilities Change 1yr fnl gr1a
FNL*t−FNL*t−12

AT*t

Net Financial Assets Change 1yr nfna gr1a
NFNA*t−NFNA*t−12

AT*t

Effective Tax Rate Change 1yr tax gr1a
TAXt−TAXt−12

AT*t

Change in Property, Plant and Equip-
ment Less Inventories scaled by lagged
Assets

ppeinv gr1a
PPEINV *t−PPEINV *t−12

AT*t−12

Change in Long-Term NOA scaled by
average Assets

lnoa gr1a
LNOA*t−LNOA*t−12

AT*t−AT*t−12

Book Equity Change 1 yr scaled by As-
sets

be gr1a
BE*t−BE*t−12

AT*t

Change in Short-Term Investments
scaled by Assets

sti gr1a
IV STt−IV STt−12

AT*t

Profit Margins

Operating Profit Margin after Depre-
ciation

ebit sale EBIT*t

SALE*t

Return on Assets

Gross Profit scaled by Assets gp at GP*t

AT*t

Cash Based Operating Profitability
scaled by Assets

cop at COP*t

AT*t

Quarterly Income scaled by AT niq at NI QTR*t

AT*t−3

Operating Cash Flow scaled by Assets ocf at OCF*t

AT*t

Ball Operating Profit to Assets op at OP*t

AT*t

Ball Operating Profit scaled by lagged
Assets

op atl1 OP*t

AT*t−12
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Name Abbreviation Construction

Gross Profit scaled by lagged Assets gp atl1 GP*t

AT*t−12

Cash Based Operating Profitability
scaled by lagged Assets

cop atl1 COP*t

AT*t−12

Return on Book Equity

Operating Profit to Equity scaled by
BE

ope be OPE*t

BE*t

Net Income scaled by BE ni be NI*t

BE*t

Quarterly Income scaled by BE niq be NI QTR*t

BE*t−3

Operating Profit scaled by lagged
Book Equity

ope bel1 OPE*t

BE*t−12

Return on Invested Capital

Operating Profit after Depreciation
scaled by BEV

ebit bev EBIT*t

BEV *t

Issuance

Net Issuance scaled by Assets netis at NETIS*t

AT*t

Equity Net Issuance scaled by Assets eqnetis at EQNETIS*t

AT*t

Net Debt Issuance scaled by Assets dbnetis at DBNETIS*t

AT*t

Accruals

Operating Accruals oaccruals at OACC*t

AT*t

Percent Operating Accruals oaccruals ni OACC*t

|NIX*t|

Total Accruals taccruals at TACC*t

AT*t

Percent Total Accruals taccruals ni TACC*t

|NIX*t|

Net Operating Asset to Total Assets noa at NOA*t

AT*t

Financial Soundness Ratios

Operating Leverage opex at OPEX*t

AT*t

Activity/Efficiency Ratios

Asset Turnover at turnover SALE*t

(AT*t+AT*t−12)/2

Miscellaneous

Sales scaled by BEV sale bev SALE*t

BEV *t

R&D scaled by Sales rd sale XRDt

SALE*t

Balance Sheet Fundamental to Market Equity

Book Equity scaled by Market Equity be me BE*t
MEt

Total Assets scaled by Market Equity at me AT*t
MEt

Total Debt scaled by ME debt me DEBT*t
MEt
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Name Abbreviation Construction

Net Debt scaled by ME netdebt me NETDEBT*t
MEt

Income Fundamentals to Market Equity

Net Income scaled by ME ni me NI*t
MEt

Sales scaled by ME sale me SALE*t
MEt

Operating Cash Flow scaled by ME ocf me OCF*t
MEt

Free Cash Flow scaled by ME fcf me FCF*t
MEt

R&D scaled by ME rd me XRDt
MEt

Balance Sheet Fundamentals to Market Enterprise Value

Book Enterprise Value scaled by MEV bev mev BEV *t

MEV *t

Equity Payout/Issuance to Market Equity

Net Equity Payout scaled by ME eqpo me EQPO*t
MEt

Equity Net Payout scaled by ME eqnpo me EQNPO*t
MEt

Income Fundamentals to Market Enterprise Value

Operating Profit before Depreciation
scaled by MEV

ebitda mev EBITDA*t

MEV *t

Income Growth

Number of Consecutive Earnings In-
creases

ni inc8q Count number of earnings increases over past 8 quarters

Operating Cash Flow to Assets 1 yr
Change

ocf at chg1 OCF ATt −OCF ATt−12

Change in Quarterly Income scaled by
BE

niq be chg1 NIQ BEt −NIQ BEt−12

Change in Quarterly Income scaled by
AT

niq at chg1 NIQ ATt −NIQ ATt−12

Change Sales minus Change Inventory dsale dinv CHG TO EXP (SALE*t)− CHG TO EXP (INVt)

Change Sales minus Change Receiv-
ables

dsale drec CHG TO EXP (SALE*t)− CHG TO EXP (RECt)

Change Gross Profit minus Change
Sales

dgp dsale CHG TO EXP (GP*t)− CHG TO EXP (SALE*t)

Change Sales minus Change SG&A dsale dsga CHG TO EXP (SALE*t)− CHG TO EXP (XSGAt)

Earnings Surprise saleq su SUR(SALE QTR*)

Revenue Surprrise niq su SUR(NI QTR*)

Other Variables

Cash and Short Term Investments
scaled by Assets

cash at CASHt

AT*t

R&D Capital-to-Assets rd5 at
∑4

n=0(1−.2•n)(XRDt−12∗n)

AT*t

Age age Age of the firms in months
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Name Abbreviation Construction

Abnormal Corporate Investment capex abn CAPX SALE*t

(CAPX SALE*t−12+CAPX SALE*t−24+CAPX SALE*t−36)/3
−1

Earnings before Tax and Extraordi-
nary Items to Net Income Including
Extraordinary Items

pi nix PI*t

NIX*t

Book Leverage at be AT*t

BE*t

Operating Cash Flow to Sales Quar-
terly Volatility

ocfq saleq std SDEV 16Q
(

OCF QTR*t

SALE QTR*t
)
)

Liquidity scaled by lagged Assets aliq at ALIQ*t

AT*t−12

Liquidity scaled by lagged Market As-
sets

aliq mat ALIQ*t

MAT*t−12

Tangibility tangibility
CASHt + 0.715 •RECt + 0.547 • INVt + 0.535 • PPEGt

AT*t

Equity Duration eq dur Outlined in detail here

Piotroski F-Score f score Outlined in detail here

Ohlson O-Score o score Outlined in detail here

Altman Z-Score z score Outlined in detail here

Kaplan-Zingales Index kz index Outlined in detail here

Intrinsic value intrinsic value Outlined in detail here

Intrinsic value-to-market ival me INTRINSIC V ALUE*t
MEt

Earnings Variability earnings variability
σ60M

(
NI*t/AT*t−12

)
σ60M

(
OCF*t/AT*t−12

)
1 yr lagged Net Income to Assets ni ar1

NI*t−12

AT*t−12

Net Income Idiosyncratic Volatility ni ivol Outlined in detail here

K.4 Market Based Characteristics
Datasets

� CRSP.MSF

� CRSP.DSF

� COMP.SECD

� COMP.G SECD

� COMP.SECM

� COMP.SECURITY

� COMP.G SECURITY

Market Variables

A suffix of ’*’ indicates that we have altered or renamed the original item.
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Table K.5: Market Variables

Name Abbreviation Construction

CRSP Variables57

Share Adjustment Factor adjfct* We use CFACSHR
Shares shares* We use SHROUT/1000 so shares outstanding are in millions.
Price prc* We use |PRC|
Local Price prc local* We use PRC*

Highest Daily Price/Ask prc high
We use ASKHI. If PRC* or AKSHI are negative, then
PRC HIGH is set to missing

Lowest Daily Price/Bid prc low
We use BIDLO. If PRC* or BIDLO are negative, then
PRC LOW is set to missing

Adjusted Proce prc adj* We use PRC*×ADJFCT*

Market Equity me*
We use PRC*×SHARES* so market equity is quoted in mil-
lion USD.

Company Market Equity me company* We sum ME* grouped by PERMNO and date
Dollar Volume dolvol* We use VOL×PRC*
Return RET* We use RET
Local Return ret local* We use RET

Excess Return ret exc*
We use (RET*-T30RET)/21. If T30RET is unavailable, we
use RF. If the return is a daily return rather than a monthly
return, the RET - T30RET is divided by 1 rather than 21.

Excess Return t+1 ret exc lead1m* Excess return (ret exc*) in month t+1
Time Since Most Recent Return ret lag dif* We automatically set this to 1
Cumulative Return ri* This is the cumulative return estimated from RET*

Monthly Dividend div tot*
We use
(RET -RETX)×lag(PRC*)×(CFACSHR/lag(CFACSHR))

Compustat Variables
Share Adjustment Factor adjfct* We use AJEXDI
Shares shares* We use CSHOC/1000000
Price prc* We use PRC LOCAL*×FX
Local Price prc local* We use PRCCD
Market Equity me* We use PRC*×SHARES*
Company Market Equity me company* We use ME*
Dollar Volume dolvol* We use CSHTRD×PRC*
Return RET* We use RET LOCAL*×FX

Excess Return ret exc*
We use (RET*-T30RET)/21. If T30RET is unavailable, we
use RF. If the return is a daily return rather than a monthly
return, the RET - T30RET is divided by 1 rather than 21.

Excess Return t+1 ret exc lead1m* Excess return (ret exc*) in month t+1
Cumulative Return - Local ri local* We use PRC LOCAL*× TRFD/AJEXDI
Local Return ret local* We use RI LOCAL*/lag(RI LOCAL*) - 1

Time Since Most Recent Return ret lag dif*
We estimate the number of days since the previous return. If
the returns are monthly rather than daily, then the time is in
months

Cumulative Return ri* RI LOCAL* × FX*
Monthly Dividend div tot* We use DIV × FX*. If DIV is missing, we set it to zero

Cash Dividend div cash*
We use DIVD × FX*. If DIVD is unavailable, we set it to
zero

Special Cash Dividend div spc*
We use DIVSP × FX*. If DIVSP is unavailable, we set it to
zero

Bid-Ask Average Dummy bidask* When PRCSTD = 4 then 1, otherwise 0
Asset Pricing Factors

Excess Market Return mktrf* Country specific market return

High Minus Low hml*
Country specific factor following Fama and French (1993) and
using breakpoints from non-micro cap stocks within the coun-
try

Small Minus Big ala Fama-French smb ff*
Average of small portfolios minus average of large portfolios
from hml*

Return on Equity roe*

Country specific factor following Hou, Xue and Zhang (2015)
and using breakpoints from non-micro cap stocks within the
country. We use double sorts on return on equity and size
rather than triple sorts with investment, due to the limited
number of stocks in some international markets.

57lag is a lag function where lag(x) is the value of x from the previous time period
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Name Abbreviation Construction

Investment inv*

Country specific factor following Hou, Xue and Zhang (2015)
and using breakpoints from non-micro cap stocks within the
country. We use double sorts on investment and size rather
than triple sorts with return on equity, due to the limited
number of stocks in some international markets

Small Minus Big ala Hou et al smb hxz*
Average of small portfolios minus average of large portfolios
from roe* and inv*

Market Volatility for Each Stock mktvol zd* σzD(MKTRF*t) 58

Table K.6: Market Characteristics

Name Abbreviation Construction

Market Based Size Measure

Market Equity market equity ME*t

Equity Payout

Dividend to Price - 12 Months div12m me
∑11

n=0 DIV TOT*t−n×SHARES*t−n

ME*t

Change in Shares - 12 Month chcsho 12m SHARES*t×ADJFCT*t

SHARES*t−12×ADJFCT*t−12
− 1

Net Equity Payout - 12 Month eqnpo 12m log

(
RI*t

RI*t−12

)
− log

(
ME*t

ME*t−12

)
Momentum/Reversal

Short Term Reversal ret 1 0 RI*t

RI*t−1
− 1

Momentum 1-3 Months ret 3 1
RI*t−1

RI*t−3
− 1

Momentum 1-6 Months ret 6 1
RI*t−1

RI*t−6
− 1

Momentum 1-9 Months ret 9 1
RI*t−1

RI*t−9
− 1

Momentum 1-12 Months ret 12 1
RI*t−1

RI*t−12
− 1

Momentum 7-12 Months ret 12 7
RI*t−7

RI*t−12
− 1

Momentum 12-60 Months ret 60 12
RI*t−12

RI*t−60
− 1

Seasonality

1 Year Annual Seasonality seas 1 1an Return in month t-12

2 - 5 Year Annual Seasonality seas 2 5an Average return over annual lags from year t-2 to t-5

6 - 10 Year Annual Seasonality seas 6 10an Average return over annual lags from year t-6 to t-10

11 - 15 Year Annual Seasonality seas 11 15an Average return over annual lags from year t-11 to t-15

16 - 20 Year Annual Seasonality seas 16 20an Average return over annual lags from year t-16 to t-20)

1 Year Non-Annual Seasonality seas 1 1na Average return from month t-1 to t-11

2 - 5 Year Non-Annual Seasonality seas 2 5na Average return over non-annual lags from year t-2 to t-5

6 - 10 Year Non-Annual Seasonality seas 6 10na Average return over non-annual lags from year t-6 to t-10

11 - 15 Year Non-Annual Seasonality seas 11 15na Average return over non-annual lags from year t-11 to t-15

58Must have enough non-missing values of stock to be estimated
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Name Abbreviation Construction

16 - 20 Year Non-Annual Seasonality seas 16 20na Average return over non-annual lags from year t-16 to t-20

Combined Accounting and Market Based Characteristics

Let et be defined as described here

60 Month CAPM Beta beta 60m
COV AR 60M(RET*t,MKTRF*t)

V ARC 60M(MKTRF*t)

Performance Based Mispricing mispricing perf59

1

4

(
O SCOREr01

t +RET 12 1r01t +

GP AT r01
t +NIQ AT r01

t

)

Management Based Mispricing mispricing mgmt

1

6

(
CHCSHO 12Mr01

t + EQNPO 12Mr01
t +

OACCRUALS AT r01
t +NOA AT r01

t +

AT GR1r01t + PPEINV GR1Ar01
t

)
Residual Momentum - 6 Month resff3 6 1 −1 +

∏6
n=1 1 + et−n

Residual Momentum - 12 Month resff3 12 1 −1 +
∏12

n=1 1 + et−n

Daily Market Data60

Let ϵt be defined as described here

Return Volatility rvol zd σzD(RET EXC*t)

Maximum Return rmax1 zd MAX1 zD(RET*t)

Mean Maximum Return rmax5 zd 1
5

∑5
n=1 Xn, Xn ∈ MAX5 zD(RET*)

Return Skewness rskew zd SKEW zD(RET EXC*t)

Price-to-High prc highprc zd PRC ADJ*t

MAX1 zD(PRC ADJ*t)

Amihud (2002) Measure ami zd

(
|RET*t|

DOLV OL*t

)
zD

∗ 1000000

CAPM Beta beta zd Described in detail here

CAPM Idiosyncratic Vol. ivol capm zd Described in detail here

CAPM Skewness iskew capm zd Described in detail here

Coskewness coskew zd61
(ϵt×MKTRF DM2

t )
zD√

(ϵ2t )zD×(MKTRF DM2
t )

zD

Fama and French Idiosyncratic Vol. ivol ff3 zd Described in detail here

Fama and French Skewness iskew ff3 zd Described in detail here

Hou, Xue and Zhang Idiosyncratic Vol. ivol hxz4 zd Described in detail here

Hou, Xue and Zhang Skewness iskew hxz4 zd Described in detail here

Dimson Beta beta dimson zd Created as described in Dimson (1979)

59A rank characteristic has the value of that characteristics rank with respect to other companies’ same
characteristic of the same month and country scaled [0, 1]. This is identified with a “r01” superscript.

60Many of the variables in this section are estimated using rolling windows of data, and the variables are
estimated using a variety of window lengths: 21, 126, 252 and 1260 days. In this section, I refer to the
number of days as m as a proxy for any of the possible window lengths.

61MKTRF DMt = MKTRF*t −MKTRF*tzD
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Name Abbreviation Construction

Downside Beta betadown zd Described in detail here

Zero Trades zero trades zd
Number of days with zero trades over period. In case of equal
number of zero trading days, turnover zd will decide on the
rank following Liu (2006)

Turnover turnover zd
(

TV OL*t

SHARES*t∗1000000

)
zD

Turnover Volatility turnover var zd
σzD

(
(TV OL*t/SHARES*t)∗1000000

)
TURNOV ER zDt

Dollar Volume dolvol zd DOLV OL*tzD

Dollar Volume Volatility dolvol var zd
σzD(DOLV OL*t)
DOLV OL zDt

Correlation to Market corr zd
The correlation between RET EXC*3l = RET EXC*t +
RET EXC*t−1 + RET EXC*t−2 and MKT EXC 3l =
MKTRF*t +MKTRF*t−1 +MKTRF*t−2

Betting Against Beta betabab 1260d CORR 1260dt×RV OL 252dt
MKTV OL 252d*t

Max Return to Volatility rmax5 rvol 21d RMAX5 21dt
RV OL 252dt

21 Day Bid-Ask High-Low bidaskhl 21d
High-low bid ask estimator created using code from Corwin
and Schultz (2012)

Quality Minus Junk

Quality Minus Junk - Profit qmj prof

ZV
(
ZV (GP ATt) + ZV (NI BEt)+

ZV (NI ATt) + ZV (OCF ATt) + ZV (GP SALE*t)+

ZV (OACCRUALS ATt)
)

Quality Minus Junk - Growth qmj growth

ZV
(
ZV (GPOA CH5t) + ZV (ROE CH5t)

+ZV (ROA CH5t) + ZV (CFOA CH5t)+

ZV (GMAR CH5t)
)

Quality Minus Junk - Safety qmj safety
ZV

(
ZV (BETABAB 1260dt) + ZV (DEBT ATt)

+ZV (O SCOREt) + ZV (Z SCOREt) + ZV ( EV OLt)
)

Quality Minus Junk qmj (QMJ PROFt +QMJ GROWTHt +QMJ SAFETYt)/3

K.5 Detailed Characteristic Construction
This section includes detailed descriptions how we built characteristics that don’t easily fit into the Accounting

Characteristics or Market Characteristics tables.

� Equity Duration

– Define the following variables:

* horizon: number of months used to estimate helper variables

* r: constant used as assumed discount rate

* roe mean: constant used as the average ROE value

* roe ar1: constant used as the expected growth rate of ROE

* g mean: constant used as the average sales growth rate

* g ar1: constant used as the expected growth rate of sales
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– Create initial variables:

roe0 =
NI*t

BE*t−12

g0 =
SALE*t

SALE*t−12
− 1

be0 = BE*t

* If the number of non-missing observations is less than or equal to 12 or the variables’ respective

denominators are less than or equal to 1 roe0t and g0t are set to missing.

– Forecast cash distributions

roe c = roe mean× (1− roe ar1)

g c = g mean× (1− g ar1)

roet =

horizon∑
i=1

roe c+ roe ar1× roet−i

gt =

horizon∑
i=1

g c+ g ar1× gt−i

bet =

horizon∑
i=1

bet−i × (1 + gt)

cdt =

horizon∑
i=1

bet × ( roet − gt)

– Create duration helper variables 62

ed constant = horizon+
1 + r

r

ed cw wt =

horizon∑
i=1

ed cd wi−1 + i× cdt
(1 + r)i

ed cdt =

horizon∑
i=1

ed cdi−1 +
cdt

(1 + r)i

– Characteristic: eq durt =
ed ed wt×FXt

ME COMPANYt
+ ed constant× ME COMPANYt−ed cdt×FXt

ME COMPANYt

� Piotroski F-Score

62ed cw w, ed cd and ed err are equal to 0 at i = 1. ed cw w and ed cd recusrively build upon themselves
over the length of the horiozon, so ed cw wi−1, for example, would be the previous iteration of ed cw w
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– Create helper variables:

f roat =
NI*t

AT*t−12

f croat =
OCF*t
AT*t−12

f droat = f roat − f roat−12

f acct = f croat − f roat

f lev =
DLTTt

AT*t
− DLTTt−12

AT*t−12

f liqt =
CA*t
CL*t

− CA*t−12

CL*t−12

f eqist = EQIS*t

f gmt =
GP*t

SALE*t
− GP*t−12

SALE*t−12

f aturnt =
SALE*t
AT*t−12

− SALE*t−12

AT*t−24

* For all variables except f acc, f aturn f eqis, if the count of available observations is less than

or equal to 12, then the variable is set to missing. If f aturn has less than or equal to 24 non-

missing observations, it is set to missing. If a variable has AT*t or AT*t−12 as an input and

AT*t ≤ 0 or AT*t−12 ≤ 0, then it is set to missing. If CL*t ≤ 0 or CL*t−12 ≤ 0 then f liqt is

set to missing. If SALE*t ≤ 0 or SALE*t−12 ≤ 0 then f gmt is set to missing.

– Characteristic63

f scoret = f roa>0,t + f croa>0,t + f droa>0,t + f acc>0,t+

f lev<0,t + f liq>0,t + f eqis=0,t + f gm>0,t + f aturn>0,t

� Ohlson O-Score

– Create helper variables:

o latt = AT*t−1

o levt =
DEBT*t
AT*t

o wct =
CA*t − CL*t

AT*t

o roet =
NIX*t
AT*t

o caclt =
CL*t
CA*t

o ffot =
PI*t +DPt

LTt

o neg eqt = 1 if LTt > AT*t, otherwise 0

o neg earn = 1 if NIX*t < 0 and NIX*t−12 < 0

o nicht =
NIX*t −NIX*t−12

|NIX*t|+ |NIX*t−12|

63A subscript of > 0, ex: V ARt>0,t, is a dummy for if the variable is greater than zero, and it is defined
similarly for V ARt<0,t or any other specification. Otherwise, not included as an input, Also, if any variables
other than f eqist are missing, then f scoret is set to missing.
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* If AT*t ≤ 0, then o latt, o levt, o wct, and o roet are set to missing. If CA*t ≤ 0 then o caclt
is set to missing. If LTT ≤ 0 then o ffot is set to missing. If LTt or AT*t are missing, then

o neg eqt is set to missing. If there are less than or equal to 12 observations or either of NIX*t
and NIX*t−12 are missing, then o nicht and o neg earnt are set to missing.

– Characteristic:

o scoret =− 1.37− 0.407× o latt + 6.03× o levt + 1.43× o wct+

0.076× o caclt − 1.72× o neg eqt − 2.37× o roet−
1.83× o ffot + 0.285× o neg earnt − 0.52× o nicht

� Altman Z-Score

– Create helper variables:

z wct =
CA*t − CL*t

AT*t

z ret =
REt

AT*t

z ebt =
EBITDA*t

AT*t

z sat =
SALE*t
AT*t

z met =
ME FISCALt

LTt

* If AT*t ≤ 0 then any variable including AT*t, then it is set to missing. If LTt ≤ 0, then z met
is set to missing.

– Characteristic:

z scoret = 1.2× z wct + 1.4× z ret + 3.3× z ebt + 0.6× z met + 1.0× z sat

� Kaplan-Zingales Index

– Create helper variables:

kz cft =
NI*t +DPt

PPENTt−12

kz qt =
AT*t +ME FISCALt −BE*t

AT*t

kz dbt =
DEBT*t

DEBT*t + SEQ*t

kz dvt =
DIV *t

PPENTt−12

kz cst =
CHEt

PPENTt−12

* If the number of non-missing observations is less than or equal to 12, then kz cft, kz dvt and

kz cst are set to zero. If PPENTt−12 ≤ 0 then kz cft, kz dvt and kz cst are set to missing. If

AT*t ≤ 0 then kz qt is set to missing. If (DEBT*t + SEQ*t) = 0 then kz dbt is set to missing.

– Characteristic:

kz index = −1.002× kz cft + 0.283× kz qt + 3.139× kz dbt − 39.368× kz dvt − 1.315× kz cst

� Intrinsic Value from Frankel and Lee
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– Define r as a constant assumed discount rate

– Create helper variables:

iv pot =
DIV *t
NIX*t

iv roet =
NIX*t

(BE*t +BE*t−12)/2

iv be1t = (1 + (1− iv pot)× iv roet)×BE*t)

* If NIX*t ≤ 0 then

iv pot =
DIV *t

AT*t × 0.06

* If the number of non-missing observations is less than or equal to 12 or (BE*t + BE*t−12) ≤ 0

then iv roet is set to missing.

– Characteristics:

intrinsic valuet = BE*t +
iv roet − r

1 + r
×BE*t +

iv roet − r

(1 + r)× r
× iv be1t

* If intrinsic valuet ≤ 0 then it is set to missing.

� Net Income Idiosyncratic Volatility

– Define the following variable 64:

ni att =
NI*t
AT*t

– A rolling regression of the following form is run for each company, with the time series split up into n

groups:

ni att = β0 + β1 ni att−12 + ut

where edft = the error degrees of freedom of regression and rmset = root mean square error of the

regression.

– Characteristic:

ni ivolt =

√
rmse2t × edft

edft + 1

� Beta, Idiosyncratic Volatility and Skewness of Asset Pricing Factor Regressions

– This section describes the construction of beta zd for the CAPM model, and the idiosyncratic volatility

and skewness characteristics, which are estimated using three different factor models:

* CAPM (capm):

RET EXC*t = β0 + β1MKTRF*t + ϵt

* Fama-French 3 Factor Model (ff3):

RET EXC*t = β0 + β1MKTRF*t + β2HML*t + β3SMB FF*t + et

64If AT*t ≤ 0, then ni att is set to missing
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* Hou, Xue and Zhang 4 Factor Model (hxz4):

RET EXC*t = β0 + β1MKTRF*t + β2SMB HXZ*t + β3ROE*t + β4INV *t + µt

– Characteristics 65:

beta zd = β1 from the CAPM model

ivol capm zdt = σzD(ϵt)

ivol ff3 zdt = σzD(et)

ivol hxz4 zdt = σzD(µt)

iskew capm zdt = SKEW zD(ϵt)

iskew ff3 zdt = SKEW zD(et)

iskew hxz4 zdt = SKEW zD(σt)

� Downside Beta

– Define the following regression model run over z days:

RET EXC*t = β0 + β1MKTRF*t + ϵt

However, we restrict the data to when MKTRF* is negative.

– Characteristic:

* betadown zd = β1

K.6 FX Conversion Rate Construction
This section outlines how we create a daily dataset, beginning 01/01/1950 to now, of X currency - USD exchange

rate using COMPUSTAT. This is run in the macro compustat fx() in the project macros.sas file.

� We use COMP.EXRT DLY, which has daily conversion rates from GBP to other currencies ’X’.

� Every day available, we estimate the exchange rate fxt as

fxt =
USDGBP,t

XGBP,t

where XGBP,t is the exchange rate of GBP to currency X on day t.

� In case there are gaps in information, we assume the exchange rate of the last observation until a new

observation is available.

� fxt is quoted as Xt
USDt

, so to go from X to USD, do Xt × fxt

65z indicates over how many days the model is run.
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